diff --git a/graph.py b/graph.py
new file mode 100644
index 0000000..6421a2d
--- /dev/null
+++ b/graph.py
@@ -0,0 +1,54 @@
+import matplotlib.pyplot as plt
+import pandas as pd
+import sys
+
+def plot_stacked_graph(title, output, csv_file1, csv_file2, position, position2):
+ # Read CSV files
+ data1 = pd.read_csv(csv_file1, header=0)
+ data2 = pd.read_csv(csv_file2, header=0)
+
+ # Extract column titles
+ x1_label, y1_label = data1.columns[0], data1.columns[1]
+ x2_label, y2_label = data2.columns[0], data2.columns[1]
+
+ # Extract data
+ x1, y1 = data1[x1_label], data1[y1_label]
+ x2, y2 = data2[x2_label], data2[y2_label]
+
+ # Create the plot
+ fig, ax = plt.subplots()
+
+ ax.plot(x1, y1, label=f"{csv_file1}")
+ ax.plot(x2, y2, label=f"{csv_file2}")
+
+ ax.fill_between(x1, y1, alpha=0.5)
+ ax.fill_between(x2, y2, alpha=0.5)
+
+ if position < 2 ** 32:
+ ax.axvline(x=position, color='red', linestyle='--')
+ ax.text(position, ax.get_ylim()[1] * 0.95, f"Feed-forward average # of epochs", color='red', fontsize=10, ha='right', va='top', backgroundcolor='white')
+
+ if position2 < 2 ** 32:
+ ax.axvline(x=position2, color='red', linestyle='--')
+ ax.text(position2, ax.get_ylim()[1] * 0.95, f"Deep learning average # of epochs", color='red', fontsize=10, ha='right', va='top', backgroundcolor='white')
+
+ ax.set_xlabel(x1_label)
+ ax.set_ylabel(y1_label)
+ ax.legend()
+ ax.set_title(title)
+
+ plt.savefig(output)
+
+if __name__ == "__main__":
+ if len(sys.argv) != 5:
+ print("Usage: python script.py
")
+ sys.exit(1)
+
+ csv_file1 = sys.argv[3]
+ csv_file2 = sys.argv[4]
+ title = sys.argv[1]
+ output = sys.argv[2]
+ position = sys.argv[5]
+ position2 = sys.argv[6]
+
+ plot_stacked_graph(title, output, csv_file1, csv_file2, position, position2)
\ No newline at end of file
diff --git a/src/MNIST.cpp b/src/MNIST.cpp
index b981430..3813212 100644
--- a/src/MNIST.cpp
+++ b/src/MNIST.cpp
@@ -20,7 +20,8 @@
#include
#include
#include
-#include
+#include
+#include
#include
#include
#include
@@ -29,6 +30,18 @@
namespace fp
{
+ std::string binary_directory;
+ std::string python_dual_stacked_graph_program;
+
+ void run_python_line_graph(const std::string& title, const std::string& output_file, const std::string& csv1, const std::string& csv2,
+ const blt::size_t pos_forward, const blt::size_t pos_deep)
+ {
+ const auto command = "python3 " + python_dual_stacked_graph_program + " '" + title + "' '" + output_file + "' '" + csv1 + "' '" + csv2 + "' "
+ + std::to_string(pos_forward) + " " + std::to_string(pos_deep);
+ BLT_TRACE("Running %s", command.c_str());
+ std::system(command.c_str());
+ }
+
class idx_file_t
{
template
@@ -248,7 +261,7 @@ namespace fp
struct epoch_stats_t
{
- batch_stats_t test_results {};
+ batch_stats_t test_results{};
double average_loss = 0;
double learn_rate = 0;
@@ -321,7 +334,7 @@ namespace fp
return *this;
}
- blt::size_t average_size() const
+ [[nodiscard]] blt::size_t average_size() const
{
blt::size_t acc = 0;
for (const auto& [epoch_stats] : run_stats)
@@ -329,7 +342,7 @@ namespace fp
return acc;
}
- network_stats_t average_stats() const
+ [[nodiscard]] network_stats_t average_stats() const
{
network_stats_t stats;
for (const auto& [epoch_stats] : run_stats)
@@ -380,8 +393,8 @@ namespace fp
template
batch_stats_t test_network(NetworkType& network)
{
- const idx_file_t test_images{"../problems/mnist/t10k-images.idx3-ubyte"};
- const idx_file_t test_labels{"../problems/mnist/t10k-labels.idx1-ubyte"};
+ const idx_file_t test_images{binary_directory + "../problems/mnist/t10k-images.idx3-ubyte"};
+ const idx_file_t test_labels{binary_directory + "../problems/mnist/t10k-labels.idx1-ubyte"};
const image_t test_image{test_images, test_labels};
@@ -398,8 +411,8 @@ namespace fp
template
network_stats_t train_network(const std::string& ident, NetworkType& network)
{
- const idx_file_t train_images{"../problems/mnist/train-images.idx3-ubyte"};
- const idx_file_t train_labels{"../problems/mnist/train-labels.idx1-ubyte"};
+ const idx_file_t train_images{binary_directory + "../problems/mnist/train-images.idx3-ubyte"};
+ const idx_file_t train_labels{binary_directory + "../problems/mnist/train-labels.idx1-ubyte"};
const image_t train_image{train_images, train_labels};
@@ -480,8 +493,9 @@ namespace fp
return network;
}
- template
- void run_network_tests(std::string path, const std::string& ident, const blt::i32 runs, const bool restore)
+ template
+ std::pair run_network_tests(std::string path, const std::string& ident, const blt::i32 runs,
+ const bool restore)
{
path += ("/" + ident + "/");
std::filesystem::create_directories(path);
@@ -495,16 +509,28 @@ namespace fp
auto local_ident = ident + std::to_string(i);
NetworkType network{};
if (restore)
- network = load_network(local_ident);
+ try
+ {
+ network = load_network(local_ident);
+ }
+ catch (dlib::serialization_error&)
+ {
+ stats += train_network(local_ident, network);
+ }
else
stats += train_network(local_ident, network);
test_stats.push_back(test_network(network));
}
+ batch_stats_t average;
+ for (const auto& v : test_stats)
+ average += v;
+ average /= runs;
+ return {stats, average};
}
- void run_deep_learning_tests(const std::string& path, const blt::i32 runs, const bool restore)
+ auto run_deep_learning_tests(const std::string& path, const blt::i32 runs, const bool restore)
{
using namespace dlib;
using net_type_dl = loss_multiclass_log<
@@ -514,30 +540,41 @@ namespace fp
max_pool<2, 2, 2, 2, relu>>>>>>>>>>>>>;
- run_network_tests(path, "deep_learning", runs, restore);
+ return run_network_tests(path, "deep_learning", runs, restore);
}
- void run_feed_forward_tests(const std::string& path, const blt::i32 runs, const bool restore)
+ auto run_feed_forward_tests(const std::string& path, const blt::i32 runs, const bool restore)
{
using namespace dlib;
using net_type_ff = loss_multiclass_log<
fc<10,
relu>>>>>>>;
+ relu>>>>>>>;
- run_network_tests(path, "feed_forward", runs, restore);
+ return run_network_tests(path, "feed_forward", runs, restore);
}
void run_mnist(const int argc, const char** argv)
{
+ binary_directory = std::filesystem::current_path();
+ if (!blt::string::ends_with(binary_directory, '/'))
+ binary_directory += '/';
+ python_dual_stacked_graph_program = binary_directory + "../graph.py";
+ BLT_TRACE(binary_directory);
+ BLT_TRACE(python_dual_stacked_graph_program);
+
using namespace dlib;
blt::arg_parse parser{};
parser.addArgument(
- blt::arg_builder{"-r", "--restore"}.setAction(blt::arg_action_t::STORE_TRUE).setDefault(false).setHelp("Restores from last save").build());
+ blt::arg_builder{"-r", "--restore"}.setAction(blt::arg_action_t::STORE_TRUE).setDefault(false).setHelp(
+ "Restores from last save").build());
parser.addArgument(blt::arg_builder{"-t", "--runs"}.setHelp("Number of runs to perform [default: 10]").setDefault("10").build());
+ parser.addArgument(
+ blt::arg_builder{"-p", "--python"}.setHelp("Only run the python scripts").setAction(blt::arg_action_t::STORE_TRUE).setDefault(false).
+ build());
parser.addArgument(blt::arg_builder{"type"}.setDefault("all").setHelp("Type of network to run [ff, dl, default: all]").build());
auto args = parser.parse_args(argc, argv);
@@ -545,16 +582,57 @@ namespace fp
const auto type = blt::string::toLowerCase(args.get("type"));
const auto runs = std::stoi(args.get("runs"));
const auto restore = args.get("restore");
- const auto path = "./" + std::to_string(blt::system::getCurrentTimeMilliseconds());
+ const auto path = binary_directory + std::to_string(blt::system::getCurrentTimeMilliseconds());
+
if (type == "all")
{
- run_deep_learning_tests(path, runs, restore);
- run_feed_forward_tests(path, runs, restore);
- } else if (type == "ff")
+ auto [deep_stats, deep_tests] = run_deep_learning_tests(path, runs, restore);
+ auto [forward_stats, forward_tests] = run_feed_forward_tests(path, runs, restore);
+
+ auto average_forward_size = forward_stats.average_size();
+ auto average_deep_size = deep_stats.average_size();
+
+ {
+ std::ofstream test_results_f{path + "/test_results_table.txt"};
+ test_results_f << "\\begin{figure}" << std::endl;
+ test_results_f << "\t\\begin{tabular}{|c|c|c|c|}" << std::endl;
+ test_results_f << "\t\t\\hline" << std::endl;
+ test_results_f << "\t\tTest & Correct & Incorrect & Accuracy (\\%) \\\\" << std::endl;
+ test_results_f << "\t\t\\hline" << std::endl;
+ auto test_accuracy = forward_tests.hits / static_cast(forward_tests.hits + forward_tests.misses) * 100;
+ test_results_f << "\t\tFeed-Forward & " << forward_tests.hits << " & " << forward_tests.misses << " & " << std::setprecision(2) <<
+ test_accuracy << "\\\\" << std::endl;
+ test_accuracy = deep_tests.hits / static_cast(deep_tests.hits + deep_tests.misses) * 100;
+ test_results_f << "\t\tDeep Learning & " << deep_tests.hits << " & " << deep_tests.misses << " & " << std::setprecision(2) <<
+ test_accuracy << "\\\\" << std::endl;
+ test_results_f << "\t\\end{tabular}" << std::endl;
+ test_results_f << "\\end{figure}" << std::endl;
+
+ const auto [forward_epoch_stats] = forward_stats.average_stats();
+ std::ofstream train_forward{path + "/forward_train_results.csv"};
+ train_forward << "Epoch,Loss" << std::endl;
+ for (const auto& [i, v] : blt::enumerate(forward_epoch_stats))
+ train_forward << i << ',' << v.average_loss << std::endl;
+
+ const auto [deep_epoch_stats] = deep_stats.average_stats();
+ std::ofstream train_deep{path + "/deep_train_results.csv"};
+ train_deep << "Epoch,Loss" << std::endl;
+ for (const auto& [i, v] : blt::enumerate(deep_epoch_stats))
+ train_deep << i << ',' << v.average_loss << std::endl;
+
+ std::ofstream average_epochs{path + "/average_epochs.txt"};
+ average_epochs << average_forward_size << "," << average_deep_size << std::endl;
+ }
+
+ run_python_line_graph("Feed-Forward vs Deep Learning, Average Loss over Epochs", "epochs.png", path + "/forward_train_results.csv",
+ path + "/deep_train_results.csv", average_forward_size, average_deep_size);
+ }
+ else if (type == "ff")
{
run_feed_forward_tests(path, runs, restore);
- } else if (type == "df")
+ }
+ else if (type == "df")
{
run_deep_learning_tests(path, runs, restore);
}