From cacc94d9379cb477d36e837c93f4627db8ab8115 Mon Sep 17 00:00:00 2001 From: Brett Laptop Date: Wed, 8 Jan 2025 18:02:41 -0500 Subject: [PATCH] 6th --- CMakeLists.txt | 2 +- src/MNIST.cpp | 98 ++++++++++++++++++++++++-------------------------- 2 files changed, 48 insertions(+), 52 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 617ec8d..37ae7a1 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,5 +1,5 @@ cmake_minimum_required(VERSION 3.25) -project(COSC-4P80-Final-Project VERSION 0.0.11) +project(COSC-4P80-Final-Project VERSION 0.0.12) option(ENABLE_ADDRSAN "Enable the address sanitizer" OFF) option(ENABLE_UBSAN "Enable the ub sanitizer" OFF) diff --git a/src/MNIST.cpp b/src/MNIST.cpp index 9e2b552..e3f7534 100644 --- a/src/MNIST.cpp +++ b/src/MNIST.cpp @@ -580,15 +580,22 @@ namespace fp void run_mnist(const int argc, const char** argv) { binary_directory = std::filesystem::current_path(); + blt::size_t pos = 0; if (!blt::string::ends_with(binary_directory, '/')) + { + pos = binary_directory.find_last_of('/') - 1; binary_directory += '/'; - python_dual_stacked_graph_program = binary_directory + "../graph.py"; + } + else + pos = binary_directory.substr(0, binary_directory.size() - 1).find_last_of('/') - 1; + python_dual_stacked_graph_program = binary_directory.substr(0, pos) + "/graph.py"; BLT_TRACE(binary_directory); BLT_TRACE(python_dual_stacked_graph_program); BLT_TRACE("Running with batch size %d", batch_size); BLT_TRACE("Installing Signal Handlers"); - if (std::signal(SIGINT, [](int){ + if (std::signal(SIGINT, [](int) + { BLT_TRACE("Stopping current training"); break_flag = true; }) == SIG_ERR) @@ -623,68 +630,57 @@ namespace fp parser.addArgument( blt::arg_builder{"-p", "--python"}.setHelp("Only run the python scripts").setAction(blt::arg_action_t::STORE_TRUE).setDefault(false). build()); - parser.addArgument(blt::arg_builder{"type"}.setDefault("all").setHelp("Type of network to run [ff, dl, default: all]").build()); + parser.addArgument( + blt::arg_builder{"network"}.setDefault(std::to_string(blt::system::getCurrentTimeMilliseconds())).setHelp("location of network files"). + build()); auto args = parser.parse_args(argc, argv); - const auto type = blt::string::toLowerCase(args.get("type")); const auto runs = std::stoi(args.get("runs")); const auto restore = args.get("restore"); - const auto path = binary_directory + std::to_string(blt::system::getCurrentTimeMilliseconds()); + auto path = binary_directory + args.get("network"); + auto [deep_stats, deep_tests] = run_deep_learning_tests(path, runs, restore); + auto [forward_stats, forward_tests] = run_feed_forward_tests(path, runs, restore); + + auto average_forward_size = forward_stats.average_size(); + auto average_deep_size = deep_stats.average_size(); - if (type == "all") { - auto [deep_stats, deep_tests] = run_deep_learning_tests(path, runs, restore); - auto [forward_stats, forward_tests] = run_feed_forward_tests(path, runs, restore); + std::ofstream test_results_f{path + "/test_results_table.txt"}; + test_results_f << "\\begin{figure}" << std::endl; + test_results_f << "\t\\begin{tabular}{|c|c|c|c|}" << std::endl; + test_results_f << "\t\t\\hline" << std::endl; + test_results_f << "\t\tTest & Correct & Incorrect & Accuracy (\\%) \\\\" << std::endl; + test_results_f << "\t\t\\hline" << std::endl; + auto test_accuracy = forward_tests.hits / static_cast(forward_tests.hits + forward_tests.misses) * 100; + test_results_f << "\t\tFeed-Forward & " << forward_tests.hits << " & " << forward_tests.misses << " & " << std::setprecision(2) << + test_accuracy << "\\\\" << std::endl; + test_accuracy = deep_tests.hits / static_cast(deep_tests.hits + deep_tests.misses) * 100; + test_results_f << "\t\tDeep Learning & " << deep_tests.hits << " & " << deep_tests.misses << " & " << std::setprecision(2) << + test_accuracy << "\\\\" << std::endl; + test_results_f << "\t\\end{tabular}" << std::endl; + test_results_f << "\\end{figure}" << std::endl; - auto average_forward_size = forward_stats.average_size(); - auto average_deep_size = deep_stats.average_size(); + const auto [forward_epoch_stats] = forward_stats.average_stats(); + std::ofstream train_forward{path + "/forward_train_results.csv"}; + train_forward << "Epoch,Loss" << std::endl; + for (const auto& [i, v] : blt::enumerate(forward_epoch_stats)) + train_forward << i << ',' << v.average_loss << std::endl; - { - std::ofstream test_results_f{path + "/test_results_table.txt"}; - test_results_f << "\\begin{figure}" << std::endl; - test_results_f << "\t\\begin{tabular}{|c|c|c|c|}" << std::endl; - test_results_f << "\t\t\\hline" << std::endl; - test_results_f << "\t\tTest & Correct & Incorrect & Accuracy (\\%) \\\\" << std::endl; - test_results_f << "\t\t\\hline" << std::endl; - auto test_accuracy = forward_tests.hits / static_cast(forward_tests.hits + forward_tests.misses) * 100; - test_results_f << "\t\tFeed-Forward & " << forward_tests.hits << " & " << forward_tests.misses << " & " << std::setprecision(2) << - test_accuracy << "\\\\" << std::endl; - test_accuracy = deep_tests.hits / static_cast(deep_tests.hits + deep_tests.misses) * 100; - test_results_f << "\t\tDeep Learning & " << deep_tests.hits << " & " << deep_tests.misses << " & " << std::setprecision(2) << - test_accuracy << "\\\\" << std::endl; - test_results_f << "\t\\end{tabular}" << std::endl; - test_results_f << "\\end{figure}" << std::endl; + const auto [deep_epoch_stats] = deep_stats.average_stats(); + std::ofstream train_deep{path + "/deep_train_results.csv"}; + train_deep << "Epoch,Loss" << std::endl; + for (const auto& [i, v] : blt::enumerate(deep_epoch_stats)) + train_deep << i << ',' << v.average_loss << std::endl; - const auto [forward_epoch_stats] = forward_stats.average_stats(); - std::ofstream train_forward{path + "/forward_train_results.csv"}; - train_forward << "Epoch,Loss" << std::endl; - for (const auto& [i, v] : blt::enumerate(forward_epoch_stats)) - train_forward << i << ',' << v.average_loss << std::endl; - - const auto [deep_epoch_stats] = deep_stats.average_stats(); - std::ofstream train_deep{path + "/deep_train_results.csv"}; - train_deep << "Epoch,Loss" << std::endl; - for (const auto& [i, v] : blt::enumerate(deep_epoch_stats)) - train_deep << i << ',' << v.average_loss << std::endl; - - std::ofstream average_epochs{path + "/average_epochs.txt"}; - average_epochs << average_forward_size << "," << average_deep_size << std::endl; - } - - run_python_line_graph("Feed-Forward vs Deep Learning, Average Loss over Epochs", "epochs.png", path + "/forward_train_results.csv", - path + "/deep_train_results.csv", average_forward_size, average_deep_size); - } - else if (type == "ff") - { - run_feed_forward_tests(path, runs, restore); - } - else if (type == "df") - { - run_deep_learning_tests(path, runs, restore); + std::ofstream average_epochs{path + "/average_epochs.txt"}; + average_epochs << average_forward_size << "," << average_deep_size << std::endl; } + run_python_line_graph("Feed-Forward vs Deep Learning, Average Loss over Epochs", "epochs.png", path + "/forward_train_results.csv", + path + "/deep_train_results.csv", average_forward_size, average_deep_size); + // net_type_dl test_net; // const auto stats = train_network("dl_nn", test_net); // std::ofstream out_file{"dl_nn.csv"};