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Abstract

Deep learning integrates feature extraction directly into the traditional neu-
ral network architecture, improving overall performance. This paper explores
the benefits of deep learning by using the MNIST handwritten digit dataset.
We compare two different network configurations: one with feature extraction
and feed-forward classification, and the other with only the feed-forward clas-
sification. Our results demonstrate that as the size of the feed-forward net-
work is reduced, its classification performance decreases. However, by lever-
aging feature extraction, we are able to retain classification power, showing
the value of deep learning in improving performance with smaller networks.
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Chapter 1

Introduction

As previously mentioned, deep learning combines feature extraction through
convolution and pooling with traditional neural networks, eliminating the
need for humans to manually extract features from datasets. Convolution, in
essence, is a filtering process where trained filter(s) slides over the input data
to extract features and other useful information. Pooling is the subsequent
process of taking local samples and selecting either the minimum, maximum,
or average of those samples. This step helps identify feature locations and
condenses the information produced by the convolution layer.

A typical deep learning pipeline consists of several convolution and pooling
layers, followed by a few fully connected layers. In this work, we aim to
demonstrate that using a deep learning network configuration can reduce the
size of the feed-forward section without compromising program classification
performance, thereby highlighting the effectiveness of deep learning.

The MNIST database is a standard benchmark for image-processing neural
networks. For our comparison, we will use a modified version of the DLIB
deep learning example. This approach allows us to showcase the differences
between standard feed-forward neural networks and deep learning networks
without requiring expensive GPUs or AI accelerators. While the MNIST
dataset is solvable using only feed-forward neural networks, we intend to
demonstrate that feature extraction with deep learning can achieve better
prediction accuracy, even with smaller classification networks.
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Chapter 2

Experimental Setup

The MNIST database comprises grayscale images of size 28x28 pixels, with
60,000 training images and 10,000 test images. For each experiment, we
present graphs comparing the average error per epoch for both configura-
tions, alongside a table summarizing the test results of the final network
after training. Due to resource constraints, training is limited to a maximum
of 100 epochs, and the experiments are averaged over ten runs. Notably, the
deep learning configuration requires approximately six hours to complete on
a 32-thread workstation.

Our experiments are divided into two phases, each testing a deep learning
network alongside its corresponding feed-forward network. To ensure a fair
comparison, the feed-forward test focuses exclusively on the feed-forward
component of the deep learning network. This approach ensures consistency
in variables such as the number of layers or nodes in the feed-forward section,
minimizing potential biases and preserving the integrity of the results.

2.1 Experiment 1

The first experiment compares the performance of a deep learning con-
figuration to a baseline feed-forward network, using the example provided
in the DLIB C++ library. The deep learning configuration consists of two
ReLU-activated convolutional layers, each followed by max-pooling and then
a fully connected feed-forward network.
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The first convolutional layer uses six filters, each sized 5x5, with a stride
of 1x1. The second convolutional layer applies sixteen filters with the same
size and stride configuration. After each convolutional operation, the output
is passed through a max-pooling layer with a filter size of 2x2 and a stride
of 2x2, which reduces the spatial dimensions.

The pooled features are then fed into a three-layer fully connected ReLU-
activated feed-forward network. The fully connected layers consist of 120
neurons in the first layer, 84 neurons in the second, and 10 neurons in the
final output layer, with each output representing a predicted class for the
input image.

For comparison, the baseline configuration omits the convolutional and
pooling layers and consists solely of the three-layer feed-forward network.
This setup isolates the feed-forward network’s performance, enabling a direct
comparison with the deep learning configuration.

Figure 2.1: Experiment 1 network configuration.

2.2 Experiment 2

The second experiment retains the same convolutional and pooling con-
figurations as in Experiment 1 but modifies the number of neurons in the
feed-forward section of the network. This adjustment reduces the number of
parameters available for object detection and classification, allowing for an
evaluation of how deep learning’s hierarchical feature extraction compensates
for reduced network capacity.
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By demonstrating the impact of parameter constraints, this experiment
highlights the advantage of feature extraction in the deep learning configura-
tion, particularly when resources in the feed-forward section are limited. This
serves to underscore the practical utility of convolutional layers in achieving
robust classification performance with smaller, more efficient networks.

Figure 2.2: Experiment 2 network configuration.
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Chapter 3

Results

3.1 Experiment 1

Our testing results, presented in Table 3.1, demonstrate that both clas-
sical feed-forward networks and deep learning configurations are capable of
achieving near-perfect classification on the testing dataset with a reasonably
sized neural network. The deep learning network achieved an exceptional
performance, converging in only 20 epochs with a final classification accu-
racy of 99%. In comparison, the feed-forward network reached an accuracy
of 98% but required nearly all the allotted epochs to reach this level of per-
formance. While it is possible that the feed-forward network could match
the deep learning network’s performance with additional training epochs, re-
source constraints precluded this, and such an extension was unnecessary for
the purposes of Experiment 1.

These findings suggest the presence of an underlying pattern within the
Arabic numeral system that can be effectively learned by both approaches.
Furthermore, as illustrated in Figure 3.1, the deep learning configuration
demonstrated substantially faster convergence, underscoring the efficiency of
convolutional layers in feature extraction and their role in expediting conver-
gence in the training process.

It is important to note that throughout this experiment, the deep learning
component accounted for the majority of the runtime. This is acceptable,
as our primary goal is to demonstrate the benefit of feature extraction on
classification performance, rather than to assess computational efficiency.
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While deep learning may be outclassed for a relatively simple problem like
this, it becomes a more viable option for more complex tasks. In such cases,
feature extraction could offer a significant advantage, as the large size of a
feed-forward-only network may become impractical.

Figure 3.1: Experiment 1 Feed-Forward vs Deep Learning, average loss while
training.

Test Correct Incorrect Accuracy (%)
Feed-Forward 9800 199 98
Deep Learning 9898 101 99

Table 3.1: Experiment 1 results on testing dataset. (Averaged over 10 runs)
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3.2 Experiment 2

In Experiment 2, the benefits of deep learning are evident, as shown in
Table 3.2. Despite the significantly reduced size of the classification net-
work, the deep learning configuration maintains the 99% accuracy achieved
in Experiment 1. In contrast, the feed-forward network’s performance de-
clines, now achieving only 96% accuracy. Notably, the deep learning net-
work still converges within 20 epochs, similar to Experiment 1. While the
feed-forward network roughly converges within 40 epochs and continues to
improve throughout the remainder of the run, it never reaches the peak clas-
sification accuracy observed in Experiment 1.

It could certainly be argued that the reduced size of the feed-forward net-
work is the primary cause of the observed decrease in performance. How-
ever, this only serves to highlight the value of feature extraction. Feature
extraction allows for the provision of more information-dense data to the
classification network, and, as clearly demonstrated in this experiment, it
significantly enhances overall performance. While allowing the feed-forward
network more training time might help improve its results, the benefit of
feature extraction in the deep learning configuration remains evident.
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Figure 3.2: Experiment 2 Feed-Forward vs Deep Learning, average loss while
training.

Test Correct Incorrect Accuracy (%)
Feed-Forward 9588 411 96
Deep Learning 9887 112 99

Table 3.2: Experiment 2 results on testing dataset. (Averaged over 10 runs)
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Chapter 4

Conclusion

We have demonstrated that feature extraction through deep learning is a
powerful tool for enhancing neural network performance. This is particularly
evident when addressing larger-scale problems, such as the ImageNet1000
dataset, which contains one thousand different classification labels. Instead
of training a network to process entire images across all labels, feature ex-
traction allows for a more efficient approach, where the network is trained
on extracted features rather than raw data. With a sufficiently large and
reasonable deep learning network, problems like ImageNet can be effectively
tackled, where traditional feed-forward networks would likely struggle.

However, this work has clear limitations. We only conducted two experi-
ments and did not control for the number of parameters between the feed-
forward network and the feature extraction step. Future work could address
this by testing with feed-forward networks that have larger and more layers,
thus compensating for the parameter discrepancy between the two configura-
tions. Despite these limitations, we believe this paper has successfully shown
that feature extraction in deep learning is a valuable and powerful tool.
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