51 lines
1.8 KiB
Python
51 lines
1.8 KiB
Python
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import sys
|
|
|
|
def plot_stacked_graph(title, output, csv_file1, csv_file2, name1, name2, position, position2):
|
|
# Read CSV files
|
|
data1 = pd.read_csv(csv_file1, header=0)
|
|
data2 = pd.read_csv(csv_file2, header=0)
|
|
|
|
# Extract column titles
|
|
x1_label, y1_label = data1.columns[0], data1.columns[1]
|
|
x2_label, y2_label = data2.columns[0], data2.columns[1]
|
|
|
|
# Extract data
|
|
x1, y1 = data1[x1_label], data1[y1_label]
|
|
x2, y2 = data2[x2_label], data2[y2_label]
|
|
|
|
# Create the plot
|
|
fig, ax = plt.subplots()
|
|
|
|
line1, = ax.plot(x1, y1, label=f"{name1}")
|
|
line2, = ax.plot(x2, y2, label=f"{name2}")
|
|
|
|
if position < 2 ** 32:
|
|
ax.axvline(x=position, color='red', linestyle='--')
|
|
ax.text(position, ax.get_ylim()[1] * 0.95, f"Feed-forward average\n # of epochs ({position})", color=line2.get_color(), fontsize=10, ha='right', va='top', backgroundcolor='white')
|
|
if position2 < 2 ** 32:
|
|
ax.axvline(x=position2, color='red', linestyle='--')
|
|
ax.text(position2, ax.get_ylim()[1] * 0.75, f"Deep learning average\n # of epochs ({position2})", color=line1.get_color(), fontsize=10, ha='right', va='top', backgroundcolor='white')
|
|
|
|
ax.set_xlabel(x1_label)
|
|
ax.set_ylabel(y1_label)
|
|
ax.legend()
|
|
ax.set_title(title, fontsize=12)
|
|
|
|
plt.savefig(output)
|
|
|
|
if __name__ == "__main__":
|
|
if len(sys.argv) != 9:
|
|
print("Usage: python script.py <title> <output_file> <csv_file1> <csv_file2> <csv1_name> <csv2_name> <pos1> <pos2>")
|
|
sys.exit(1)
|
|
|
|
csv_file1 = sys.argv[3]
|
|
csv_file2 = sys.argv[4]
|
|
title = sys.argv[1]
|
|
output = sys.argv[2]
|
|
position = sys.argv[5]
|
|
position2 = sys.argv[6]
|
|
|
|
plot_stacked_graph(title, output, csv_file1, csv_file2, position, position2, int(sys.argv[7]), int(sys.argv[8]))
|