COSC-4P82-Final-Project/lib/beagle-3.0.3/tests/GA/optfct/Functions.hpp

197 lines
4.3 KiB
C++
Raw Permalink Normal View History

2024-04-01 00:01:49 -04:00
/*
* Open BEAGLE
* Copyright (C) 2001-2007 by Christian Gagne and Marc Parizeau
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Contact:
* Laboratoire de Vision et Systemes Numeriques
* Departement de genie electrique et de genie informatique
* Universite Laval, Quebec, Canada, G1K 7P4
* http://vision.gel.ulaval.ca
*
*/
/*!
* \file Functions.hpp
* \brief Definition of the differents functions that can be optimized.
* \author Christian Gagne
* $Revision: 1.5.2.1 $
* $Date: 2007/05/11 19:13:09 $
*/
#ifndef Functions_hpp
#define Functions_hpp
#include <cmath>
#include <vector>
/*!
* \brief Sphere function (F1).
*/
class SphereFunct {
public:
/*!
* \brief Construct a Sphere function object.
*/
SphereFunct() { }
/*!
* \brief Evaluate the function on a given point.
* \param inX Point to evaluate the function value.
* \return Value of function at the given point.
*/
inline double operator()(const std::vector<double>& inX) const
{
double lSum=0.0;
// for(unsigned i=0; i<inX.size(); ++i) {
// lSum += (inX[i] * inX[i]);
// }
for(unsigned i=0; i<inX.size(); ++i) {
const double lXtrans = inX[i] - double(i)*3.;
lSum += (lXtrans * lXtrans);
}
return lSum;
}
};
/*!
* \brief Schwefel's function (F2).
*/
class SchwefelFunct {
public:
/*!
* \brief Construct a Schwefel's function object.
*/
SchwefelFunct() { }
/*!
* \brief Evaluate the function on a given point.
* \param inX Point to evaluate the function value.
* \return Value of function at the given point.
*/
inline double operator()(const std::vector<double>& inX) const
{
double lSum1=0.0, lSum2=0.0;
for(unsigned i=0; i<inX.size(); ++i) {
lSum2=0.0;
for(unsigned int j=0; j<=i; ++j) {
lSum2 += inX[j];
}
lSum1 += (lSum2 * lSum2);
}
return lSum1;
}
};
/*!
* \brief F3 function.
*/
class F3Funct {
public:
/*!
* \brief Construct a F3 function object.
*/
F3Funct() { }
/*!
* \brief Evaluate the function on a given point.
* \param inX Point to evaluate the function value.
* \return Value of function at the given point.
*/
inline double operator()(const std::vector<double>& inX) const
{
double lSum=0.0;
for(unsigned i=0; i<inX.size(); ++i) {
lSum += (inX[i] * inX[i] * std::pow(1.0e6, double(i)/(double(inX.size())-1.0)));
}
return lSum;
}
};
/*!
* \brief Rosenbrock's function (F6).
*/
class RosenbrockFunct {
public:
/*!
* \brief Construct a Rosenbrock's function object.
*/
RosenbrockFunct() { }
/*!
* \brief Evaluate the function on a given point.
* \param inX Point to evaluate the function value.
* \return Value of function at the given point.
*/
inline double operator()(const std::vector<double>& inX) const
{
double lSum=0.0;
for(unsigned int i=0; i<(inX.size()-1); ++i) {
lSum += (100.0 * std::pow(((inX[i]*inX[i])-inX[i+1]), 2.0)) +
std::pow(inX[i], 2.0);
}
return lSum;
}
};
/*!
* \brief Rastrigin's function (F9).
*/
class RastriginFunct {
public:
/*!
* \brief Construct a Rastrigin's function object.
*/
RastriginFunct() { }
/*!
* \brief Evaluate the function on a given point.
* \param inX Point to evaluate the function value.
* \return Value of function at the given point.
*/
inline double operator()(const std::vector<double>& inX) const
{
double lSum=0.0;
for(unsigned i=0; i<inX.size(); ++i) {
lSum += (inX[i] * inX[i]) - (10.0 * std::cos(2.0*M_PI*inX[i])) + 10.0;
}
return lSum;
}
};
#endif // Functions_hpp