#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "blt/std/hashmap.h"
#include "blt/std/memory.h"
#ifndef FINALPROJECT_RUNNER_AGGREGATION_H
#define FINALPROJECT_RUNNER_AGGREGATION_H
#include
#include
#include
#include
#include
#include
#include
#include
template
static inline void fill_value(T& v, const std::string& str)
{
try
{
if constexpr (std::is_floating_point_v)
{
v = std::stod(str);
} else if constexpr (std::is_integral_v)
{
v = std::stoi(str);
} else
{
static_assert("Unsupported type!");
}
} catch (const std::exception& e)
{
BLT_ERROR("Failed to convert value from string '%s' to type '%s' what(): %s", str.c_str(), blt::type_string().c_str(), e.what());
}
}
/**
* Structure used to store information loaded from the .stt file
*/
struct stt_record
{
public:
stt_record() = default;
int gen, sub;
double mean_fitness;
double best_fitness, worse_fitness, mean_tree_size, mean_tree_depth;
int best_tree_size, best_tree_depth, worse_tree_size, worse_tree_depth;
double mean_fitness_run;
double best_fitness_run, worse_fitness_run, mean_tree_size_run, mean_tree_depth_run;
int best_tree_size_run, best_tree_depth_run, worse_tree_size_run, worse_tree_depth_run;
stt_record& operator+=(const stt_record& r);
stt_record& operator/=(int i);
static stt_record from_string_array(int generation, size_t& idx, blt::span values);
};
/**
* Structure used to store information loaded from the .fn file
*/
struct fn_record
{
// real value = 'cammeo' predicted value = 'cammeo'
blt::size_t cc = 0;
// real value = 'cammeo' predicted value = 'osmancik'
blt::size_t co = 0;
// real value = 'osmancik' predicted value = 'osmancik'
blt::size_t oo = 0;
// real value = 'osmancik' predicted value = 'cammeo'
blt::size_t oc = 0;
double fitness = 0;
// hits from the training data, kinda useless
blt::size_t hits = 0;
};
struct runs_stt_data
{
// per generation (map stores from gen -> list of rows (records))
blt::hashmap_t> averages;
// per RUN generation size
std::vector runs_generation_size;
// count of the number of generations that use the same number of generations (used for calculating mode) exists [0, largest_generation]
blt::scoped_buffer generations_size_count;
// largest number of generations from all runs
int largest_generation = 0;
// total number of generations across all runs (r1...rn)
int total_generations = 0;
// total / runs
int generations_average = 0;
// # of run lengths value is `data.generations_size_count[data.mode_generation]`
int generations_mode = 0;
// the generation that is the mode
int mode_generation = 0;
};
struct runs_fn_data
{
std::vector runs;
// index of the best recorded run
blt::size_t best = 0;
// total number of hits from all runs
blt::size_t total_hits = 0;
// total number of rice testing data
blt::size_t total_tests = 0;
// hits / tests for all runs
blt::size_t average_hits = 0;
blt::size_t average_tests = 0;
// percent of valid tests
double average_valid = 0;
double total_fitness = 0;
double average_fitness = 0;
};
void process_stt_file(runs_stt_data& data, int& max_gen, std::string_view file);
runs_stt_data get_per_generation_averages(const std::string& outfile, int runs);
// in case you are wondering why all these functions are using template parameters, it is so that I can pass BLT_?*_STREAM into them
// allowing for output to stdout
template
inline void write_record(T& writer, const stt_record& r)
{
writer << r.gen << '\t';
writer << r.sub << '\t';
writer << r.mean_fitness << '\t';
writer << r.best_fitness << '\t';
writer << r.worse_fitness << '\t';
writer << r.mean_tree_size << '\t';
writer << r.mean_tree_depth << '\t';
writer << r.best_tree_size << '\t';
writer << r.best_tree_depth << '\t';
writer << r.worse_tree_size << '\t';
writer << r.worse_tree_depth << '\t';
writer << r.mean_fitness_run << '\t';
writer << r.best_fitness_run << '\t';
writer << r.worse_fitness_run << '\t';
writer << r.mean_tree_size_run << '\t';
writer << r.mean_tree_depth_run << '\t';
writer << r.best_tree_size_run << '\t';
writer << r.best_tree_depth_run << '\t';
writer << r.worse_tree_size_run << '\t';
writer << r.worse_tree_depth_run << '\n';
}
template
inline void write_data_values(T& writer, const std::string& function, const bool end, FUNC func, Args... args)
{
const char BASE = 'a';
for (int i = 0; i < 20; i++)
{
char c = static_cast(BASE + i);
writer << function;
func(writer, c, args...);
if (i != 19 || !end)
writer << '\t';
// spacing tab
if (i == 19 && !end)
writer << '\t';
}
}
// writes functions operating on runs per generation
template
inline void write_func_gens(T& writer, const char c, const int current_gen, runs_stt_data& data, const blt::size_t gen_offset, const blt::size_t offset)
{
auto runs = data.averages[current_gen].size();
for (size_t j = 0; j < runs; j++)
{
writer << c << ((gen_offset) + (offset + j));
if (j != runs - 1)
writer << ", ";
else
writer << ')';
}
}
// operates on the aggregated data created by the above function giving totals for the entire population
template
inline void write_func_pop(T& writer, const char c, const int gen_size, const blt::size_t offset)
{
for (int j = 0; j < gen_size; j++)
{
// get the position of our aggregated data, which the offset contains
writer << c << (offset - gen_size - 1 + j);
if (j != gen_size - 1)
writer << ", ";
else
writer << ')';
}
}
void write_averaged_output(const std::string& writefile, const runs_stt_data& data, const std::vector& generation_averages);
void write_full_output(const std::string& writefile, const runs_stt_data& data, const std::vector>& ordered_records);
void process_stt(const std::string& outfile, const std::string& writefile, const std::string& writefile_run, int runs);
void process_fn(const std::string& outfile, const std::string& writefile, int runs);
void process_files(const std::string& outfile, const std::string writefile, int runs);
#endif //FINALPROJECT_RUNNER_AGGREGATION_H