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1 Question 1

Explain the difference between ”sound” and ”complete” analysis in software
analysis. Then, define what true positive, true negative, false positive, and false
negative mean. How would these terms change if the goal of the analysis changes,
particularly when ”positive” means finding a bug, and then when ”positive”
means not finding a bug.

1.1 Soundness vs Completeness

Soundness

Soundness is the ability for the analysis to not report false positives. So having
a high soundness means that you can be sure that the bugs that were found are
actually bugs in the program.
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Completeness

Completeness refers to the ability to find all the bugs in the software by an
analysis. So if you can be sure that your analysis is complete, you can be sure
that if all bugs are fixed there will be no more bugs. (unless fixing it adds
more bugs.) Of course in pratice it’s nearly impossible for any tool to be fully
complete.

1.2 Positive = Find bug

True Positive

When the program reports a bug and the bug actually exists

True Negative

When a program doesn’t report a bug and there is no bug to be found.

False Positive

When a bug is said to be found but none actually exists.

False Negative

When a bug isn’t found but does actually exist. That is to say, the program
fails to report the bug.

1.3 Positive = Not find bug

You literally invert the logic. It’s pretty basic stuff here? Is this subpart just
busy work? Take the logical not of each sentence and that’s the answer. This
results in confusing statements and shouldn’t be used in practice.

True Positive

When the program does not report a bug, there is not a bug present.

True Negative

When a program reports a bug, there is a bug to be found.

False Positive

When a bug is not found but one actually exists.

False Negative

When a bug is found, but does doesn’t actually exist.
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2 Question 2

2.1 A

Using your preferred programming language, implement a random test case
generator for a sorting algorithm program that sorts integers in ascending order.
The test case generator should be designed to produce arrays of integers with
random lengths, and values for each sorting method.

Source

Please find the source code in the ZIP attachment for the submission of this as-
signment. Compiling instructions are found within the source file. Any C++20
compiler with support for .contains and std::find\_if() will work.

Explanation

Since we are only testing random int32s of random sizes I took a very simplistic
approach. For our convenience there are two global config variables you can
change:

• DEFAULT_TEST_COUNT: Number of tests to run, defaults 10, and can be
provided at runtime via the optional command line argument:
./main.run [TEST\_COUNT]

• MAX_RAM_USAGE: The Max number of bytes a vector used in the test can
consume, this is a rough estimate used to put an upper bound on the
number of integers in the test. Each test invocation vector is independent
and memory is cleared between cycles. This was not designed with buffer
reuse or any amount of efficiency so keep that in mind when setting this
value too high. The default of 1MiB is fine for this assignment (fails about
15% of the time).

To cover all possible test cases I generate values in the range [INTEGER_MIN,

INTEGER_MAX] which populate a vector of size [0, MAX_SIZE]
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1 std::vector <std::int32_t > generateRandomData () {

2 // setup random numbers

3 static std:: random_device dev;

4 static std:: mt19937_64 engine(dev());

5 // we will generate numbers from integer min to integer

max to cover the full possible test cases

6 std:: uniform_int_distribution dist(std:: numeric_limits <

std::int32_t >:: min(), std:: numeric_limits <std::int32_t >::

max());

7 // put a upper limit on the size of the array

8 std:: uniform_int_distribution dist_size (0ul , maxSize);

9 // pick a random size

10 size_t size = dist_size(engine);

11 // populate the array

12 std::vector <std::int32_t > ret;

13 for (size_t i = 0; i < size; i++)

14 ret.push_back(dist(engine));

15 return ret;

16 }

Algorithm 1: Test case generator code

To make sure there are demonstrable bugs, the sorting code intentionally creates
errors within the sorted array. To actually sort the values I used the C++
standard algorithm std::sort which won’t fail. I did this because the standard
sort is fast and creating a sorting algorithm which fails some of the time but
not others is easier said than done.

1 [...]

2 std:: uniform_int_distribution <int > dist(0, (int) v.size()

- 1);

3 std:: uniform_real_distribution realDist (0.0, 1.0);

4 int p1 = dist(engine);

5 int p2 = dist(engine);

6 if (!v.empty () && realDist(engine) > 0.85)

7 v[p1] = v[p2];

8 [...]

Algorithm 2: Sort algorithm fail generator

This method of creating a failure also has the benefit of sometimes not failing, so
it could execute, but the array may still be valid. It also shows that out of order
pairs which are not neighbours will cause a failure condition that is detected.
It should be noted that the validation will only report the first instance of an
out of order number. This was done purely for performance. The report is
generated as a tuple {i, j} where i is the failed number index and j is the first
value index which causes the failure.
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Sample Output

I took the liberty of automatically formatting the output because I like when
things look pretty :3

Figure 1: Sample output of the random test generator.

2.2 B

Provide a context-free grammar to generate all the possible test-cases.

(1) <Array> → ”{” <Array Expression> ”}” | ”{}”

(2) <Array Expression>→<Integral t> |<Integral t> ”,”<Array Expression>

(3) <Integral t> → <Value> | -<Value>

(4) <Value> → <Integer> | <Value><Integer>

(5) <Integer> → ”0” | ”1” | ”2” | ... | ”9”
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(2.B) Explanation

I tried to be as explicit as possible based on my understanding of formal context
free grammars (very limited, mostly with regard to simple compilers). I’m sure
it could be simplified down, but the derivation of the grammar should generate
a valid C++ initializer list.
My reasoning on each:

(1) Construct the actual array object itself. Can have any number of values
in it or be an empty array.

(2) The contents of an array can either be a single integral type (termination
/ base case) or an integral type with more array content after it, which
recursively expands to any number of integers.

(3) Needed this to make sure the negative sign is placed first and only once.
Alternative would be: <Value>→ -<Value> |<Integer> |<Value><Integer>,
but that could (in theory) result in -------1 which is why I included the
integral t step.

(4) Integers can be one of 10 characters so we recursively concat any number
of <Integer> together to create our value. The examples in the slides
don’t do this, but it would not make sense without this step.

(5) The base characters for creating integer values.
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3 Question 3

3.1 A

Figure 2: Direct translation of the code, logic errors and all.
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3.2 B

Explain and provide detailed steps for “random testing” the above code. No
need to run any code, just present the coding strategy or describe your testing
method in detail.

I don’t like the lack of static types in python. So, to remedy this I will assume
items are numbers which can be trivially concatenated with strings. First start
by generating a list of N random integers where N is also selected randomly from
the whole numbers set. Second, pick a random subset of those integers, these
will be your exception types. Randomly select an integer to act as the limit.
Run the function and check the output to make sure it is what is expected.
Repeat this until the number of tests you want have completed.

4 Question 4

4.1 A

Develop 4 distinct test cases to test the above code, with code coverage ranging
from 30to 100%. For each test-case calculate and mention its code coverage.

Using statement coverage since it was not specified which type of code coverage
to use.

Figure 3: 12 Statements in the function
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Test 1

To get 30% code coverage we can input with empty data. This will run state-
ments, 1,2,3, and 12 for a total of 33.3% coverage. The values of limit and
exceptions doesn’t matter in this case.

Test 2

data = {55, 12, 66}

limit = 18

exceptions = {55}

As statements 1,2,3 and 12 all run no matter what we add 4 to the base cov-
erage. Since we have items in data statement 4 and 5 get executed. Since 55
is in exceptions statement 6 also gets executed. value 12 is less than limit so
statement 7 and 9 gets executed. Since 66 is above the limit so does statement
8 also runs. 10 and 11 will run for all 3 values resulting in 12/12 coverage or
100%.

Test 3

data = {12}

limit = 18

exceptions = {}

Figure 4: Test 3 Graphical Results
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Thus this test produces 10/12 or 83% code coverage.
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Test 4

data = {69}

limit = 420

exceptions = {69}

Figure 5: Test 4 Graphical Results

This test produces 66% code coverage.

4.2 B

Generate 6 modified (mutated) versions of the above code.

Method call mutations not possible due to the lack of external function calls
by the given function. (existing calls not possible to modify due to lack of viable
alternatives)

1 def filterData1(data , limit , exceptions):

2 filtered_data = []

3 index = 0

4 while index < len(data):

5 item = data[index]

6 if item in exceptions:

7 modified_item = str(item) + "_EXCEPTION"

8 elif item > limit:

9 modified_item = item + 2 # Arithmetic mutation

10 else:
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11 modified_item = item / limit

12 filtered_data.append(modified_item)

13 index += 1

14 return filtered_data

Algorithm 3: Mutation 1

1 def filterData2(data , limit , exceptions):

2 filtered_data = []

3 index = 0

4 while index < len(data):

5 item = data[index]

6 if item not in exceptions: # Boolean mutation

7 modified_item = str(item) + "_EXCEPTION"

8 elif item > limit:

9 modified_item = item * 2

10 else:

11 modified_item = item / limit

12 filtered_data.append(modified_item)

13 index += 1

14 return filtered_data

Algorithm 4: Mutation 2

1 def filterData3(data , limit , exceptions):

2 filtered_data = []

3 index = 1 # statement mutation

4 while index < len(data):

5 item = data[index]

6 if item in exceptions:

7 modified_item = str(item) + "_EXCEPTION"

8 elif item > limit:

9 modified_item = item * 2

10 else:

11 modified_item = item / limit

12 filtered_data.append(modified_item)

13 index += 1

14 return filtered_data

Algorithm 5: Mutation 3

1 def filterData4(data , limit , exceptions):

2 filtered_data = []

3 index = 0

4 while index < len(data):

5 item = data[index]

6 if item in data: # Variable mutation

7 modified_item = str(item) + "_EXCEPTION"

8 elif item > limit:

9 modified_item = item * 2
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10 else:

11 modified_item = item / limit

12 filtered_data.append(modified_item)

13 index += 1

14 return filtered_data

Algorithm 6: Mutation 4

1 def filterData5(data , limit , exceptions):

2 filtered_data = []

3 index = 0

4 while index < len(data):

5 item = data[index]

6 if item in exceptions:

7 modified_item = str(item) + "_EXCEPTION"

8 elif item > limit:

9 modified_item = item * 2

10 else:

11 modified_item = item / 2 # Statement mutation

12 filtered_data.append(modified_item)

13 index += 1

14 return filtered_data

Algorithm 7: Mutation 5

1 def filterData6(data , limit , exceptions):

2 filtered_data = []

3 index = 0

4 while index < len(data): # Boolean mutation

5 item = data[index]

6 if item in exceptions:

7 modified_item = str(item) + "_EXCEPTION"

8 elif item > limit:

9 modified_item = item * 2

10 else:

11 modified_item = item / limit

12 filtered_data.append(modified_item)

13 index += 1

14 return filtered_data

Algorithm 8: Mutation 6

C

Assess the effectiveness of the test cases from part A by using mutation analysis
in conjunction with the mutated codes from part B. Rank the test-cases and
explain your answer.

I made a script to all 24 cases for me :/ Ranked results are at the bottom.
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1 Running with test cases:

2 1: data = [], limit = 0, exceptions =[]

3 2: data = [55, 12, 66], limit = 18, exceptions =[55]

4 3: data = [12], limit = 18, exceptions =[]

5 4: data = [69], limit = 420, exceptions =[69]

6

7

8

9 Running tests for mutation 1

10 ----------------------------

11 Unmodified function returned [] while the modified function

returned [] on test case 1

12 TEST CASE 1 PASSED

13 Unmodified function returned [’55 _EXCEPTION ’,

0.6666666666666666 , 132] while the modified function

returned [’55 _EXCEPTION ’, 0.6666666666666666 , 68] on test

case 2

14 TEST CASE 2 FAILED

15 Unmodified function returned [0.6666666666666666] while the

modified function returned [0.6666666666666666] on test

case 3

16 TEST CASE 3 PASSED

17 Unmodified function returned [’69 _EXCEPTION ’] while the

modified function returned [’69 _EXCEPTION ’] on test case

4

18 TEST CASE 4 PASSED

19

20

21 Running tests for mutation 2

22 ----------------------------

23 Unmodified function returned [] while the modified function

returned [] on test case 1

24 TEST CASE 1 PASSED

25 Unmodified function returned [’55 _EXCEPTION ’,

0.6666666666666666 , 132] while the modified function

returned [110, ’12 _EXCEPTION ’, ’66 _EXCEPTION ’] on test

case 2

26 TEST CASE 2 FAILED

27 Unmodified function returned [0.6666666666666666] while the

modified function returned [’12 _EXCEPTION ’] on test case

3

28 TEST CASE 3 FAILED

29 Unmodified function returned [’69 _EXCEPTION ’] while the

modified function returned [0.16428571428571428] on test

case 4

30 TEST CASE 4 FAILED

31

32

33 Running tests for mutation 3
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34 ----------------------------

35 Unmodified function returned [] while the modified function

returned [] on test case 1

36 TEST CASE 1 PASSED

37 Unmodified function returned [’55 _EXCEPTION ’,

0.6666666666666666 , 132] while the modified function

returned [0.6666666666666666 , 132] on test case 2

38 TEST CASE 2 FAILED

39 Unmodified function returned [0.6666666666666666] while the

modified function returned [] on test case 3

40 TEST CASE 3 FAILED

41 Unmodified function returned [’69 _EXCEPTION ’] while the

modified function returned [] on test case 4

42 TEST CASE 4 FAILED

43

44

45 Running tests for mutation 4

46 ----------------------------

47 Unmodified function returned [] while the modified function

returned [] on test case 1

48 TEST CASE 1 PASSED

49 Unmodified function returned [’55 _EXCEPTION ’,

0.6666666666666666 , 132] while the modified function

returned [’55 _EXCEPTION ’, ’12 _EXCEPTION ’, ’66 _EXCEPTION ’]

on test case 2

50 TEST CASE 2 FAILED

51 Unmodified function returned [0.6666666666666666] while the

modified function returned [’12 _EXCEPTION ’] on test case

3

52 TEST CASE 3 FAILED

53 Unmodified function returned [’69 _EXCEPTION ’] while the

modified function returned [’69 _EXCEPTION ’] on test case

4

54 TEST CASE 4 PASSED

55

56

57 Running tests for mutation 5

58 ----------------------------

59 Unmodified function returned [] while the modified function

returned [] on test case 1

60 TEST CASE 1 PASSED

61 Unmodified function returned [’55 _EXCEPTION ’,

0.6666666666666666 , 132] while the modified function

returned [’55 _EXCEPTION ’, 6.0, 132] on test case 2

62 TEST CASE 2 FAILED

63 Unmodified function returned [0.6666666666666666] while the

modified function returned [6.0] on test case 3

64 TEST CASE 3 FAILED

65 Unmodified function returned [’69 _EXCEPTION ’] while the

modified function returned [’69 _EXCEPTION ’] on test case
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4

66 TEST CASE 4 PASSED

67

68

69 Running tests for mutation 6

70 ----------------------------

71 Unmodified function returned [] while the modified function

returned [] on test case 1

72 TEST CASE 1 PASSED

73 Unmodified function returned [’55 _EXCEPTION ’,

0.6666666666666666 , 132] while the modified function

returned [’55 _EXCEPTION ’, 0.6666666666666666 , 132] on

test case 2

74 TEST CASE 2 PASSED

75 Unmodified function returned [0.6666666666666666] while the

modified function returned [0.6666666666666666] on test

case 3

76 TEST CASE 3 PASSED

77 Unmodified function returned [’69 _EXCEPTION ’] while the

modified function returned [’69 _EXCEPTION ’] on test case

4

78 TEST CASE 4 PASSED

79

80

81 Ranked Results:

82 ---------------

83 1. mutation 2 with 3/4 failed tests

84 2. mutation 3 with 3/4 failed tests

85 3. mutation 4 with 2/4 failed tests

86 4. mutation 5 with 2/4 failed tests

87 5. mutation 1 with 1/4 failed tests

88 6. mutation 6 with 0/4 failed tests

results.txt

The first test case always passes because it’s a trivial example. Most mutations
will not cause it to fail. Other than that the results stand for themselves.

D

Discuss how you would use path, branch, and statement static analysis to eval-
uate/analyse the above code.

Branch Static Analysis Easy sweep and mark the code for branches, identi-
fying the test cases in a type of tree (the tree would include code which modifies
any variables used in the conditionals otherwise we don’t care!) then preorder
traverse the tree resulting in every test case being covered, in the correct order
of execution. Print a warning to the user if any syntactic or common logical
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errors are found (since this is static we are not actually executing the code but
looking at it for errors). Note: the left subtree would but the true case, the
right subtree would be the false case, assuming else is present.

Path Static Analysis I put this second because you could do the exact same
thing as branch analysis but instead of doing preorder, which covers all code
paths, you pick a path you want to follow and execute through it. You would
also want to record every statement (in order of function call from init/main)
instead of just what is relevant to the conditions. As with the branch analysis
we don’t actually execute the path but rather look at the code for errors. (Clang
tidy ftw)

Statement Static Analysis Parse through the file line by line looking at
all the statements in the code printing errors as we find them. I’m not sure if
you are looking for how we would actually detect that, other than syntax errors
that question has a complicated answer. Even finding syntax errors can be hard,
although you would only have to parse the AST and if you find an unexpected
token it’s pretty clear the programmer made an error.

5 Question 5

The code snippet below aims to switch uppercase characters to their lowercase
counterparts and vice versa. Numeric characters are supposed to remain un-
changed. The function contains at least one known bug that results in incorrect
output for specific inputs.

1 def processString(input_str):

2 output_str = ""

3 for char in input_str:

4 if char.isupper ():

5 output_str += char.lower()

6 elif char.isnumeric ():

7 output_str += char * 2

8 else:

9 output_str += char.upper()

10 return output_str

5.1 A

Identify the bug(s) in the code. You can either manually review the code (a
form of static analysis) or run it with diverse input values (a form of manual
random testing). If you are unable to pinpoint the bug using these methods,
you may utilize a random testing tool or implement random test case generator
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in code. Provide a detailed explanation of the bug, identify the line of code
causing it, and describe your strategy for finding it.

• Bug on line 7: numbers should remain the same. This code not only is
trying to double the value but it won’t even do that! char * 2 in python
will add 2 characters of that number to the output string. Found via
inspection and by running the program; at first I thought char * 2 would
double the integer version of the char but I was wrong. It is a good thing
I tested it in python as well.

• This is the only bug determined by visual analysis and python tests.

5.2 B

Implement Delta Debugging, in your preferred programming language to mini-
mize the input string that reveals the bug. Test your Delta Debugging code for
the following input values provided.

1 # Brett Terpstra

2 # bt19ex@brocku.ca 6920201

3

4

5 # functional version of the code to test against

6 def workingProcessString(input_str):

7 output_str = ""

8 for char in input_str:

9 if char.isupper ():

10 output_str += char.lower()

11 elif char.isnumeric ():

12 output_str += char

13 else:

14 output_str += char.upper()

15 return output_str

16

17 # the failing version of the code

18 def processString(input_str):

19 output_str = ""

20 for char in input_str:

21 if char.isupper ():

22 output_str += char.lower()

23 elif char.isnumeric ():

24 output_str += char * 2

25 else:

26 output_str += char.upper()

27 return output_str

28

29 # function to test an input string

30 def processTest(input):

31 # fancy output.
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32 print(f"-------------------[ {input}

]-------------------")

33 parts_to_test = []

34 failing_strings = []

35 passing_strings = []

36 # simple recursion emulation with a while loop

37 parts_to_test.append(input)

38 while parts_to_test:

39 # process the front of the queue

40 s = parts_to_test [0]

41 o1 = workingProcessString(s)

42 o2 = processString(s)

43 # only make substrings that make sense , recursion

base case. Append these to the queue

44 if len(s) > 1:

45 h1 , h2 = s[:len(s)//2], s[len(s)//2:]

46 parts_to_test.append(h1)

47 parts_to_test.append(h2)

48 # remove the front element from the queue

49 parts_to_test.pop(0)

50 # append to the tracking lists for later printing

and sorting

51 if o1 != o2:

52 failing_strings.append(s)

53 else:

54 passing_strings.append(s)

55 # sort the failures in order of largest to smallest

56 sorted_failings = sorted(failing_strings , key=lambda x:

-len(x))

57 # I don’t know what kind of output you were looking for

so I printed every bit of information I have

58 if len(passing_strings) > 0:

59 print(f"For input {input} we found {len(

passing_strings)} passing strings:")

60 for p in passing_strings:

61 print(f"\t{p}")

62 print ()

63

64 if len(sorted_failings) > 0:

65 print(f"For input {input} we found {len(

sorted_failings)} failing strings:")

66 for f in sorted_failings:

67 print(f"\t{f}")

68 print ()

69

70 # printing the smallest is probably the most

important

71 # since it’ll tell us the place of the bug

72 smallest = len(sorted_failings[len(sorted_failings)

-1])
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73 print(f"For input {input} the smallest erroring

strings are:")

74 for f in sorted_failings:

75 if len(f) == smallest:

76 print(f"\t{f}")

77 print ()

78 else:

79 print("No failing strings found!")

80

81 processTest("abcdefG1")

82 print()

83 processTest("CCDDEExy")

84 print()

85 processTest("1234567b")

86 print()

87 processTest("8665")

delta debugger.py

(This file is included in the zip for this assignment. I’m not completely sure why
I pasted this here but not the C++. Something Something tired Something
Something Python being cleaner than C++)
And some test results running on my computer:

1 -------------------[ abcdefG1 ]-------------------

2 For input abcdefG1 we found 11 passing strings:

3 abcd

4 ab

5 cd

6 ef

7 a

8 b

9 c

10 d

11 e

12 f

13 G

14

15 For input abcdefG1 we found 4 failing strings:

16 abcdefG1

17 efG1

18 G1

19 1

20

21 For input abcdefG1 the smallest erroring strings are:

22 1

23

24

25 -------------------[ CCDDEExy ]-------------------

26 For input CCDDEExy we found 15 passing strings:

27 CCDDEExy
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28 CCDD

29 EExy

30 CC

31 DD

32 EE

33 xy

34 C

35 C

36 D

37 D

38 E

39 E

40 x

41 y

42

43 No failing strings found!

44

45 -------------------[ 1234567b ]-------------------

46 For input 1234567b we found 1 passing strings:

47 b

48

49 For input 1234567b we found 14 failing strings:

50 1234567b

51 1234

52 567b

53 12

54 34

55 56

56 7b

57 1

58 2

59 3

60 4

61 5

62 6

63 7

64

65 For input 1234567b the smallest erroring strings are:

66 1

67 2

68 3

69 4

70 5

71 6

72 7

73

74

75 -------------------[ 8665 ]-------------------

76 For input 8665 we found 7 failing strings:

77 8665
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78 86

79 65

80 8

81 6

82 6

83 5

84

85 For input 8665 the smallest erroring strings are:

86 8

87 6

88 6

89 5

delta debugging results.txt

I would’ve preferred C++ but trying to run the python function from C++ in
a cross-platform way isn’t something I think you or I want to deal with. This
python code is a simple but clean implementation of delta debugging which
finds a set of minimal strings which cause errors within the program. From
the results of the delta debugging program it appears my static analysis was
correct in there being only one bug. This delta debugging implementation uses
a binary search method where the input string is recursively split in half until
either a minimal error string is found or the string can no longer be split. A
string is known to error if the result of the incorrect function does not match
a known correct output which is generated at runtime. Since there is no hard
way to pre-generate valid and invalid strings we must assume the output of my
’correct’ function is in fact valid. The actual implementation of this concept
uses a while loop with a queue to do the recursion, a queue was used because
using a stack is unnecessary. If I had implemented this with C++ I would have
used a stack like structure as std::vector has a pop_back function.

6 Question 6
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