

COSC 3P95- Software Analysis & Testing

Assignment 1

Due date: Monday, Oct 16th, 2023, at 23:59 (11:59 pm)

Delivery method: This is an individual assignment. Each student should submit one PDF through

Brightspace.

Attention: This assignment is worth 10% of the course grade. Please also check the Late Assignment

Policy.

 Name: _____________________ Student ID: _______________________

Questions:

1- Explain the difference between "sound" and "complete" analysis in software analysis. Then,

define what true positive, true negative, false positive, and false negative mean. How would

these terms change if the goal of the analysis changes, particularly when "positive" means

finding a bug, and then when "positive" means not finding a bug. (10 pts)

2- Using your preferred programming language, implement a random test case generator for a

sorting algorithm program that sorts integers in ascending order. The test case generator

should be designed to produce arrays of integers with random lengths, and values for each

sorting method.

A) Your submission should consist of:

a. Source code files for the sorting algorithm and the random test case generator.

b. Explanation of how your method/approach works and a discussion of the results (for

example, if and how the method was able to generate or find any bugs, etc.). You can

also include bugs in your code and show your method is able to find the input values

causing that.

c. Comments within the code for better understanding of the code.

d. Instructions for compiling and running your code.

e. Logs generated by the print statements, capturing both input array, output arrays for

each run of the program.

f. Logs for the random test executions, showing if the test was a pass and the output of

the execution (e.g., exception, bug message, etc.).

B) Provide a context-free grammar to generate all the possible test-cases. (18 + 8 = 26 pts)

3- A) For the following code, manually draw a control flow graph to represent its logic and

structure.

def filterData(data, limit, exceptions):

 filtered_data = []

 index = 0

 while index < len(data):

 item = data[index]

 if item in exceptions:

 modified_item = item + "_EXCEPTION

 elif item > limit:

 modified_item = item * 2

 else:

 modified_item = item / limit

 filtered_data.append(modified_item)

 index += 1

 return filtered_data

The code is supposed to perform the followings:

a. If an item is in the exceptions list, the function appends "_EXCEPTION" to the item.

b. If an item is greater than a given limit, the function doubles the item.

c. Otherwise, the function divides the item by 2.

B) Explain and provide detailed steps for “random testing” the above code. No need to run any

code, just present the coding strategy or describe your testing method in detail. (8 + 8 = 16 pts)

4- A) Develop 4 distinct test cases to test the above code, with code coverage ranging from 30%

to 100%. For each test-case calculate and mention its code coverage.

B) Generate 6 modified (mutated) versions of the above code.

C) Assess the effectiveness of the test cases from part A by using mutation analysis in

conjunction with the mutated codes from part B. Rank the test-cases and explain your answer.

D) Discuss how you would use path, branch, and statement static analysis to evaluate/analyse

the above code. (4 * 8 = 32 pts)

5- The code snippet below aims to switch uppercase characters to their lowercase counterparts

and vice versa. Numeric characters are supposed to remain unchanged. The function contains

at least one known bug that results in incorrect output for specific inputs.

def processString(input_str):

 output_str = ""

 for char in input_str:

 if char.isupper():

 output_str += char.lower()

 elif char.isnumeric():

 output_str += char * 2

 else:

 output_str += char.upper()

 return output_str

In this assignment, your tasks are:

a. Identify the bug(s) in the code. You can either manually review the code (a form of

static analysis) or run it with diverse input values (a form of manual random testing).

If you are unable to pinpoint the bug using these methods, you may utilize a random

testing tool or implement random test case generator in code. Provide a detailed

explanation of the bug, identify the line of code causing it, and describe your

strategy for finding it.

b. Implement Delta Debugging, in your preferred programming language to minimize

the input string that reveals the bug. Test your Delta Debugging code for the

following input values provided.

i. “abcdefG1”

ii. “CCDDEExy”

iii. “1234567b”

iv. “8665”

 Briefly explain your delta-debugging algorithm and its implementation and provide the

source code in/with your assignment. (4 + 12 = 16 pts)

6- Extra Credit Assignment: Create a GitHub repository to host all the elements of this assignment.

This includes source codes, test data, and any screenshots or logs you have generated. Submit

the GitHub link along with your main submission through Brightspace. (5 pts)

Marking Scheme:

Marks will be awarded for completeness and demonstration of understanding of the material. It is important that you fully show

your knowledge when providing solutions in a concise manner. Quality and conciseness of solutions are considered when

awarding marks. Lack of clarity may lead you to lose marks, so keep it simple and clear.

Submission:

The submission is expected to contain a sole word-processed document. The document can be in either DOC or PDF format; it

should be a single column, at least single-spaced, and at least in font 11. It is strongly recommended to use the assignment

questions to facilitate marking: answer the questions just below them for easier future reference.

Late Assignment Policy:

A one-time penalty of 25% will be applied on late assignments. Late assignments are accepted until the Late Assignment Date,

four days after the Assignment Due Date. No excuses are accepted for missing deadlines. However, deadline extensions may

be granted under extenuating circumstances, such as medical or physical conditions; please note that granting the extension is

under the instructor’s discretion. However, deadline extensions may be granted under extenuating circumstances, such as

medical or physical conditions; please note that granting the extension is under the instructor’s discretion.

Plagiarism:

Students are expected to respect academic integrity and deliver evaluation materials that are only produced by themselves. Any

copy of content, text or code, from other students, books, web, or any other source is not tolerated. If there is any indication that

an activity contains any part copied from any source, a case will be open and brought to a plagiarism committee’s attention. In

case plagiarism is determined, the activity will be canceled, and the author(s) will be subject to university regulations. For further

information on this sensitive subject, please refer to the document below: https://brocku.ca/node/10909

