COSC_4P82_Assignment_1/lib/beagle-3.0.3/tests/GP/FitnessTestGPIndividual/SymbRegEvalOp.cpp

93 lines
2.8 KiB
C++
Raw Permalink Normal View History

2024-02-13 21:21:51 -05:00
/*
* Open BEAGLE
* Copyright (C) 2001-2007 by Christian Gagne and Marc Parizeau
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Contact:
* Laboratoire de Vision et Systemes Numeriques
* Departement de genie electrique et de genie informatique
* Universite Laval, Quebec, Canada, G1K 7P4
* http://vision.gel.ulaval.ca
*
*/
/*!
* \file SymbRegEvalOp.cpp
* \brief Implementation of the class SymbRegEvalOp.
* \author Christian Gagne
* \author Marc Parizeau
* $Revision: 1.7.2.1 $
* $Date: 2007/05/09 01:51:24 $
*/
#include "SymbRegEvalOp.hpp"
#include <cmath>
using namespace Beagle;
/*!
* \brief Construct a new symbolic regression evaluation operator.
* \param inName Name of the evaluation operator.
*/
SymbRegEvalOp::SymbRegEvalOp(std::string inName) :
GP::EvaluationOp(inName.c_str()),
mX(0),
mY(0)
{ }
/*!
* \brief Evaluate the individual fitness for the symbolic regression problem.
* \param inIndividual Individual to evaluate.
* \param ioContext Evolutionary context.
* \return Handle to the fitness measure,
*/
Fitness::Handle SymbRegEvalOp::evaluate(GP::Individual& inIndividual, GP::Context& ioContext)
{
using namespace std;
cout << "Evaluating individual's fitness:" << endl;
double lSquareError = 0.0;
for(unsigned int i=0; i<mX.size(); i++) {
setValue("X", mX[i], ioContext);
Double lResult;
inIndividual.run(lResult, ioContext);
cout << " Result = " << lResult << endl;
double lError = mY[i]-lResult;
lSquareError += (lError*lError);
}
double lMSE = lSquareError / mX.size();
double lRMSE = sqrt(lMSE);
double lFitness = (1.0 / (lRMSE + 1.0));
return new FitnessSimple(lFitness);
}
/*!
* \brief Post-initialize the operator by sampling the function to regress.
* \param ioSystem System to use to sample.
*/
void SymbRegEvalOp::postInit(System& ioSystem)
{
GP::EvaluationOp::postInit(ioSystem);
for(unsigned int i=0; i<1; i++) {
mX.push_back(ioSystem.getRandomizer().rollUniform(-1.0,1.0));
std::cout << "case #" << i << ": X = " << mX.back() << std::endl;
mY.push_back(mX[i]*(mX[i]*(mX[i]*(mX[i]+1.0)+1.0)+1.0));
}
}