197 lines
4.3 KiB
C++
197 lines
4.3 KiB
C++
|
/*
|
||
|
* Open BEAGLE
|
||
|
* Copyright (C) 2001-2007 by Christian Gagne and Marc Parizeau
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2.1 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* This library is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with this library; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*
|
||
|
* Contact:
|
||
|
* Laboratoire de Vision et Systemes Numeriques
|
||
|
* Departement de genie electrique et de genie informatique
|
||
|
* Universite Laval, Quebec, Canada, G1K 7P4
|
||
|
* http://vision.gel.ulaval.ca
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/*!
|
||
|
* \file Functions.hpp
|
||
|
* \brief Definition of the differents functions that can be optimized.
|
||
|
* \author Christian Gagne
|
||
|
* $Revision: 1.5.2.1 $
|
||
|
* $Date: 2007/05/11 19:13:09 $
|
||
|
*/
|
||
|
|
||
|
#ifndef Functions_hpp
|
||
|
#define Functions_hpp
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <vector>
|
||
|
|
||
|
|
||
|
/*!
|
||
|
* \brief Sphere function (F1).
|
||
|
*/
|
||
|
class SphereFunct {
|
||
|
|
||
|
public:
|
||
|
|
||
|
/*!
|
||
|
* \brief Construct a Sphere function object.
|
||
|
*/
|
||
|
SphereFunct() { }
|
||
|
|
||
|
/*!
|
||
|
* \brief Evaluate the function on a given point.
|
||
|
* \param inX Point to evaluate the function value.
|
||
|
* \return Value of function at the given point.
|
||
|
*/
|
||
|
inline double operator()(const std::vector<double>& inX) const
|
||
|
{
|
||
|
double lSum=0.0;
|
||
|
// for(unsigned i=0; i<inX.size(); ++i) {
|
||
|
// lSum += (inX[i] * inX[i]);
|
||
|
// }
|
||
|
for(unsigned i=0; i<inX.size(); ++i) {
|
||
|
const double lXtrans = inX[i] - double(i)*3.;
|
||
|
lSum += (lXtrans * lXtrans);
|
||
|
}
|
||
|
return lSum;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
/*!
|
||
|
* \brief Schwefel's function (F2).
|
||
|
*/
|
||
|
class SchwefelFunct {
|
||
|
|
||
|
public:
|
||
|
|
||
|
/*!
|
||
|
* \brief Construct a Schwefel's function object.
|
||
|
*/
|
||
|
SchwefelFunct() { }
|
||
|
|
||
|
/*!
|
||
|
* \brief Evaluate the function on a given point.
|
||
|
* \param inX Point to evaluate the function value.
|
||
|
* \return Value of function at the given point.
|
||
|
*/
|
||
|
inline double operator()(const std::vector<double>& inX) const
|
||
|
{
|
||
|
double lSum1=0.0, lSum2=0.0;
|
||
|
for(unsigned i=0; i<inX.size(); ++i) {
|
||
|
lSum2=0.0;
|
||
|
for(unsigned int j=0; j<=i; ++j) {
|
||
|
lSum2 += inX[j];
|
||
|
}
|
||
|
lSum1 += (lSum2 * lSum2);
|
||
|
}
|
||
|
return lSum1;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
/*!
|
||
|
* \brief F3 function.
|
||
|
*/
|
||
|
class F3Funct {
|
||
|
|
||
|
public:
|
||
|
|
||
|
/*!
|
||
|
* \brief Construct a F3 function object.
|
||
|
*/
|
||
|
F3Funct() { }
|
||
|
|
||
|
/*!
|
||
|
* \brief Evaluate the function on a given point.
|
||
|
* \param inX Point to evaluate the function value.
|
||
|
* \return Value of function at the given point.
|
||
|
*/
|
||
|
inline double operator()(const std::vector<double>& inX) const
|
||
|
{
|
||
|
double lSum=0.0;
|
||
|
for(unsigned i=0; i<inX.size(); ++i) {
|
||
|
lSum += (inX[i] * inX[i] * std::pow(1.0e6, double(i)/(double(inX.size())-1.0)));
|
||
|
}
|
||
|
return lSum;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
/*!
|
||
|
* \brief Rosenbrock's function (F6).
|
||
|
*/
|
||
|
class RosenbrockFunct {
|
||
|
|
||
|
public:
|
||
|
|
||
|
/*!
|
||
|
* \brief Construct a Rosenbrock's function object.
|
||
|
*/
|
||
|
RosenbrockFunct() { }
|
||
|
|
||
|
/*!
|
||
|
* \brief Evaluate the function on a given point.
|
||
|
* \param inX Point to evaluate the function value.
|
||
|
* \return Value of function at the given point.
|
||
|
*/
|
||
|
inline double operator()(const std::vector<double>& inX) const
|
||
|
{
|
||
|
double lSum=0.0;
|
||
|
for(unsigned int i=0; i<(inX.size()-1); ++i) {
|
||
|
lSum += (100.0 * std::pow(((inX[i]*inX[i])-inX[i+1]), 2.0)) +
|
||
|
std::pow(inX[i], 2.0);
|
||
|
}
|
||
|
return lSum;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
/*!
|
||
|
* \brief Rastrigin's function (F9).
|
||
|
*/
|
||
|
class RastriginFunct {
|
||
|
|
||
|
public:
|
||
|
|
||
|
/*!
|
||
|
* \brief Construct a Rastrigin's function object.
|
||
|
*/
|
||
|
RastriginFunct() { }
|
||
|
|
||
|
/*!
|
||
|
* \brief Evaluate the function on a given point.
|
||
|
* \param inX Point to evaluate the function value.
|
||
|
* \return Value of function at the given point.
|
||
|
*/
|
||
|
inline double operator()(const std::vector<double>& inX) const
|
||
|
{
|
||
|
double lSum=0.0;
|
||
|
for(unsigned i=0; i<inX.size(); ++i) {
|
||
|
lSum += (inX[i] * inX[i]) - (10.0 * std::cos(2.0*M_PI*inX[i])) + 10.0;
|
||
|
}
|
||
|
return lSum;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
#endif // Functions_hpp
|