/* * Open BEAGLE * Copyright (C) 2001-2007 by Christian Gagne and Marc Parizeau * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Contact: * Laboratoire de Vision et Systemes Numeriques * Departement de genie electrique et de genie informatique * Universite Laval, Quebec, Canada, G1K 7P4 * http://vision.gel.ulaval.ca * */ /*! * \file SymbRegEvalOp.hpp * \brief Definition of the type SymbRegEvalOp. * \author Christian Gagne * \author Marc Parizeau * $Revision: 1.5.2.1 $ * $Date: 2007/05/09 01:51:24 $ */ /*! * \defgroup SymbReg Symbolic Regression Example * \brief Symbolic regression (symbreg): A simple GP example with Open BEAGLE. * * \par Objective * Find a function of one independent variable and one dependent variable, in * symbolic form, that fits a given sample of 20 \f$(x_i,y_i)\f$ data points, * where the target function is the quadratic polynomial \f$x^4 + x^3 + x^2 + x\f$. * * \par Terminal set * - X (the independent variable) * - PI * - Ephemeral constants randomly generated in [-1,1] * * \par Function set * - + * - - * - * * - / (protected division) * - SIN * - COS * - EXP * - LOG (protected logarithm) * * \par Fitness cases * The given sample of 20 data points \f$(x_i,y_i)\f$, randomly chosen within * interval [-1,1]. * * \par Fitness * \f$\frac{1.}{1.+RMSE}\f$ where RMSE is the Root Mean Square Error on the * fitness cases. * * \par Stopping criteria * When the evolution reaches the maximum number of generations. * * \par Reference * John R. Koza, "Genetic Programming: On the Programming of Computers by Means * of Natural Selection", MIT Press, 1992, pages 162-169. * */ #ifndef SymbRegEvalOp_hpp #define SymbRegEvalOp_hpp #include "beagle/GP.hpp" #include #include /*! * \class SymbRegEvalOp SymbRegEvalOp.hpp "SymbRegEvalOp.hpp" * \brief The individual evaluation class operator for the problem of symbolic regression. * \ingroup SymbReg */ class SymbRegEvalOp : public Beagle::GP::EvaluationOp { public: //! SymbRegEvalOp allocator type. typedef Beagle::AllocatorT Alloc; //!< SymbRegEvalOp handle type. typedef Beagle::PointerT Handle; //!< SymbRegEvalOp bag type. typedef Beagle::ContainerT Bag; explicit SymbRegEvalOp(std::string inName="SymbRegEvalOp"); virtual Beagle::Fitness::Handle evaluate(Beagle::GP::Individual& inIndividual, Beagle::GP::Context& ioContext); virtual void postInit(Beagle::System& ioSystem); protected: std::vector mX; std::vector mY; }; #endif // SymbRegEvalOp_hpp