93 lines
2.8 KiB
C++
93 lines
2.8 KiB
C++
/*
|
|
* Open BEAGLE
|
|
* Copyright (C) 2001-2007 by Christian Gagne and Marc Parizeau
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Contact:
|
|
* Laboratoire de Vision et Systemes Numeriques
|
|
* Departement de genie electrique et de genie informatique
|
|
* Universite Laval, Quebec, Canada, G1K 7P4
|
|
* http://vision.gel.ulaval.ca
|
|
*
|
|
*/
|
|
|
|
/*!
|
|
* \file SymbRegEvalOp.cpp
|
|
* \brief Implementation of the class SymbRegEvalOp.
|
|
* \author Christian Gagne
|
|
* \author Marc Parizeau
|
|
* $Revision: 1.7.2.1 $
|
|
* $Date: 2007/05/09 01:51:24 $
|
|
*/
|
|
|
|
#include "SymbRegEvalOp.hpp"
|
|
|
|
#include <cmath>
|
|
|
|
using namespace Beagle;
|
|
|
|
/*!
|
|
* \brief Construct a new symbolic regression evaluation operator.
|
|
* \param inName Name of the evaluation operator.
|
|
*/
|
|
SymbRegEvalOp::SymbRegEvalOp(std::string inName) :
|
|
GP::EvaluationOp(inName.c_str()),
|
|
mX(0),
|
|
mY(0)
|
|
{ }
|
|
|
|
|
|
/*!
|
|
* \brief Evaluate the individual fitness for the symbolic regression problem.
|
|
* \param inIndividual Individual to evaluate.
|
|
* \param ioContext Evolutionary context.
|
|
* \return Handle to the fitness measure,
|
|
*/
|
|
Fitness::Handle SymbRegEvalOp::evaluate(GP::Individual& inIndividual, GP::Context& ioContext)
|
|
{
|
|
using namespace std;
|
|
cout << "Evaluating individual's fitness:" << endl;
|
|
double lSquareError = 0.0;
|
|
for(unsigned int i=0; i<mX.size(); i++) {
|
|
setValue("X", mX[i], ioContext);
|
|
Double lResult;
|
|
inIndividual.run(lResult, ioContext);
|
|
cout << " Result = " << lResult << endl;
|
|
double lError = mY[i]-lResult;
|
|
lSquareError += (lError*lError);
|
|
}
|
|
double lMSE = lSquareError / mX.size();
|
|
double lRMSE = sqrt(lMSE);
|
|
double lFitness = (1.0 / (lRMSE + 1.0));
|
|
return new FitnessSimple(lFitness);
|
|
}
|
|
|
|
|
|
/*!
|
|
* \brief Post-initialize the operator by sampling the function to regress.
|
|
* \param ioSystem System to use to sample.
|
|
*/
|
|
void SymbRegEvalOp::postInit(System& ioSystem)
|
|
{
|
|
GP::EvaluationOp::postInit(ioSystem);
|
|
|
|
for(unsigned int i=0; i<1; i++) {
|
|
mX.push_back(ioSystem.getRandomizer().rollUniform(-1.0,1.0));
|
|
std::cout << "case #" << i << ": X = " << mX.back() << std::endl;
|
|
mY.push_back(mX[i]*(mX[i]*(mX[i]*(mX[i]+1.0)+1.0)+1.0));
|
|
}
|
|
}
|