COSC_4P82_Assignment_1/lib/beagle-3.0.3/examples/GP/symbreg
Brett e125f04383 init 2024-02-13 21:21:51 -05:00
..
MSVCPP init 2024-02-13 21:21:51 -05:00
config init 2024-02-13 21:21:51 -05:00
symbreg init 2024-02-13 21:21:51 -05:00
templates init 2024-02-13 21:21:51 -05:00
AUTHORS init 2024-02-13 21:21:51 -05:00
COPYING init 2024-02-13 21:21:51 -05:00
INSTALL init 2024-02-13 21:21:51 -05:00
Makefile.am init 2024-02-13 21:21:51 -05:00
Makefile.cvs init 2024-02-13 21:21:51 -05:00
Makefile.in init 2024-02-13 21:21:51 -05:00
README init 2024-02-13 21:21:51 -05:00
acinclude.m4 init 2024-02-13 21:21:51 -05:00
aclocal.m4 init 2024-02-13 21:21:51 -05:00
bootstrap init 2024-02-13 21:21:51 -05:00
configure init 2024-02-13 21:21:51 -05:00
configure.ac init 2024-02-13 21:21:51 -05:00
symbreg.kdevelop init 2024-02-13 21:21:51 -05:00

README

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

Symbolic regression (symbreg): A simple GP example with Open BEAGLE

Copyright (C) 2001-2003
by  Christian Gagne <cgagne@gmail.com>
and Marc Parizeau <parizeau@gel.ulaval.ca>

+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+


Getting started
===============

  Example is compiled in binary 'symbreg'. Usage options is described by
  executing it with command-line argument '-OBusage'. The detailed help can
  also be obtained with argument '-OBhelp'.

Objective
=========

  Find a function of one independent variable and one dependent variable, in
  symbolic form, that fits a given sample of 20 $(x_i,y_i)$ data points,
  where the target function is the quadratic polynomial $x^4 + x^3 + x^2 + x$.

Terminal set
============

  X (the independent variable)
  PI
  Ephemeral constants randomly generated in $[-1,1]$

Function set
============

  +
  -
  *
  /     (protected division)
  SIN
  COS
  EXP
  LOG   (protected logarithm)

Fitness cases
=============

  The given sample of 20 data points $(x_i,y_i)$, randomly chosen within
  interval [-1,1].

Fitness
=======

  $\frac{1.}{1.+RMSE}$ where RMSE is the Root Mean Square Error on the 
  fitness cases.

Stopping criteria
=================

  When the evolution reaches the maximum number of generations.

Reference
=========

  John R. Koza, "Genetic Programming: On the Programming of Computers by Means
  of Natural Selection", MIT Press, 1992, pages 162-169.