scipy swilk fortran
parent
ad517fa463
commit
74980b2fd7
|
@ -0,0 +1,354 @@
|
||||||
|
SUBROUTINE SWILK (INIT, X, N, N1, N2, A, W, PW, IFAULT)
|
||||||
|
C
|
||||||
|
C ALGORITHM AS R94 APPL. STATIST. (1995) VOL.44, NO.4
|
||||||
|
C
|
||||||
|
C Calculates the Shapiro-Wilk W test and its significance level
|
||||||
|
C
|
||||||
|
C IFAULT error code details from the R94 paper:
|
||||||
|
C - 0 for no fault
|
||||||
|
C - 1 if N1 < 3
|
||||||
|
C - 2 if N > 5000 (a non-fatal error)
|
||||||
|
C - 3 if N2 < N/2, so insufficient storage for A
|
||||||
|
C - 4 if N1 > N or (N1 < N and N < 20)
|
||||||
|
C - 5 if the proportion censored (N-N1)/N > 0.8
|
||||||
|
C - 6 if the data have zero range (if sorted on input)
|
||||||
|
C
|
||||||
|
INTEGER N, N1, N2, IFAULT
|
||||||
|
REAL X(*), A(*), PW, W
|
||||||
|
REAL C1(6), C2(6), C3(4), C4(4), C5(4), C6(3), C7(2)
|
||||||
|
REAL C8(2), C9(2), G(2)
|
||||||
|
REAL Z90, Z95, Z99, ZM, ZSS, BF1, XX90, XX95, ZERO, ONE, TWO
|
||||||
|
REAL THREE, SQRTH, QTR, TH, SMALL, PI6, STQR
|
||||||
|
REAL SUMM2, SSUMM2, FAC, RSN, AN, AN25, A1, A2, DELTA, RANGE
|
||||||
|
REAL SA, SX, SSX, SSA, SAX, ASA, XSX, SSASSX, W1, Y, XX, XI
|
||||||
|
REAL GAMMA, M, S, LD, BF, Z90F, Z95F, Z99F, ZFM, ZSD, ZBAR
|
||||||
|
C
|
||||||
|
C Auxiliary routines
|
||||||
|
C
|
||||||
|
REAL PPND, POLY
|
||||||
|
DOUBLE PRECISION ALNORM
|
||||||
|
C
|
||||||
|
INTEGER NCENS, NN2, I, I1, J
|
||||||
|
LOGICAL INIT, UPPER
|
||||||
|
C
|
||||||
|
DATA C1 /0.0E0, 0.221157E0, -0.147981E0, -0.207119E1,
|
||||||
|
* 0.4434685E1, -0.2706056E1/
|
||||||
|
DATA C2 /0.0E0, 0.42981E-1, -0.293762E0, -0.1752461E1,
|
||||||
|
* 0.5682633E1, -0.3582633E1/
|
||||||
|
DATA C3 /0.5440E0, -0.39978E0, 0.25054E-1, -0.6714E-3/
|
||||||
|
DATA C4 /0.13822E1, -0.77857E0, 0.62767E-1, -0.20322E-2/
|
||||||
|
DATA C5 /-0.15861E1, -0.31082E0, -0.83751E-1, 0.38915E-2/
|
||||||
|
DATA C6 /-0.4803E0, -0.82676E-1, 0.30302E-2/
|
||||||
|
DATA C7 /0.164E0, 0.533E0/
|
||||||
|
DATA C8 /0.1736E0, 0.315E0/
|
||||||
|
DATA C9 /0.256E0, -0.635E-2/
|
||||||
|
DATA G /-0.2273E1, 0.459E0/
|
||||||
|
DATA Z90, Z95, Z99 /0.12816E1, 0.16449E1, 0.23263E1/
|
||||||
|
DATA ZM, ZSS /0.17509E1, 0.56268E0/
|
||||||
|
DATA BF1 /0.8378E0/, XX90, XX95 /0.556E0, 0.622E0/
|
||||||
|
DATA ZERO /0.0E0/, ONE/1.0E0/, TWO/2.0E0/, THREE/3.0E0/
|
||||||
|
DATA SQRTH /0.70711E0/, QTR/0.25E0/, TH/0.375E0/, SMALL/1E-19/
|
||||||
|
DATA PI6 /0.1909859E1/, STQR/0.1047198E1/, UPPER/.TRUE./
|
||||||
|
C
|
||||||
|
PW = ONE
|
||||||
|
IF (W .GE. ZERO) W = ONE
|
||||||
|
AN = N
|
||||||
|
IFAULT = 3
|
||||||
|
NN2 = N/2
|
||||||
|
IF (N2 .LT. NN2) RETURN
|
||||||
|
IFAULT = 1
|
||||||
|
IF (N .LT. 3) RETURN
|
||||||
|
C
|
||||||
|
C If INIT is false, calculates coefficients for the test
|
||||||
|
C
|
||||||
|
IF (.NOT. INIT) THEN
|
||||||
|
IF (N .EQ. 3) THEN
|
||||||
|
A(1) = SQRTH
|
||||||
|
ELSE
|
||||||
|
AN25 = AN + QTR
|
||||||
|
SUMM2 = ZERO
|
||||||
|
DO 30 I = 1, N2
|
||||||
|
A(I) = PPND((REAL(I) - TH)/AN25,IFAULT)
|
||||||
|
SUMM2 = SUMM2 + A(I) ** 2
|
||||||
|
30 CONTINUE
|
||||||
|
SUMM2 = SUMM2 * TWO
|
||||||
|
SSUMM2 = SQRT(SUMM2)
|
||||||
|
RSN = ONE / SQRT(AN)
|
||||||
|
A1 = POLY(C1, 6, RSN) - A(1) / SSUMM2
|
||||||
|
C
|
||||||
|
C Normalize coefficients
|
||||||
|
C
|
||||||
|
IF (N .GT. 5) THEN
|
||||||
|
I1 = 3
|
||||||
|
A2 = -A(2)/SSUMM2 + POLY(C2,6,RSN)
|
||||||
|
FAC = SQRT((SUMM2 - TWO * A(1) ** 2 - TWO *
|
||||||
|
* A(2) ** 2)/(ONE - TWO * A1 ** 2 - TWO * A2 ** 2))
|
||||||
|
A(1) = A1
|
||||||
|
A(2) = A2
|
||||||
|
ELSE
|
||||||
|
I1 = 2
|
||||||
|
FAC = SQRT((SUMM2 - TWO * A(1) ** 2)/
|
||||||
|
* (ONE - TWO * A1 ** 2))
|
||||||
|
A(1) = A1
|
||||||
|
END IF
|
||||||
|
DO 40 I = I1, NN2
|
||||||
|
A(I) = -A(I)/FAC
|
||||||
|
40 CONTINUE
|
||||||
|
END IF
|
||||||
|
INIT = .TRUE.
|
||||||
|
END IF
|
||||||
|
IF (N1 .LT. 3) RETURN
|
||||||
|
NCENS = N - N1
|
||||||
|
IFAULT = 4
|
||||||
|
IF (NCENS .LT. 0 .OR. (NCENS .GT. 0 .AND. N .LT. 20)) RETURN
|
||||||
|
IFAULT = 5
|
||||||
|
DELTA = FLOAT(NCENS)/AN
|
||||||
|
IF (DELTA .GT. 0.8) RETURN
|
||||||
|
C
|
||||||
|
C If W input as negative, calculate significance level of -W
|
||||||
|
C
|
||||||
|
IF (W .LT. ZERO) THEN
|
||||||
|
W1 = ONE + W
|
||||||
|
IFAULT = 0
|
||||||
|
GOTO 70
|
||||||
|
END IF
|
||||||
|
C
|
||||||
|
C Check for zero range
|
||||||
|
C
|
||||||
|
IFAULT = 6
|
||||||
|
RANGE = X(N1) - X(1)
|
||||||
|
IF (RANGE .LT. SMALL) RETURN
|
||||||
|
C
|
||||||
|
C Check for correct sort order on range - scaled X
|
||||||
|
C
|
||||||
|
IFAULT = 7
|
||||||
|
XX = X(1)/RANGE
|
||||||
|
SX = XX
|
||||||
|
SA = -A(1)
|
||||||
|
J = N - 1
|
||||||
|
DO 50 I = 2, N1
|
||||||
|
XI = X(I)/RANGE
|
||||||
|
CCCCC IF (XX-XI .GT. SMALL) PRINT *,' ANYTHING'
|
||||||
|
SX = SX + XI
|
||||||
|
IF (I .NE. J) SA = SA + SIGN(1, I - J) * A(MIN(I, J))
|
||||||
|
XX = XI
|
||||||
|
J = J - 1
|
||||||
|
50 CONTINUE
|
||||||
|
IFAULT = 0
|
||||||
|
IF (N .GT. 5000) IFAULT = 2
|
||||||
|
C
|
||||||
|
C Calculate W statistic as squared correlation
|
||||||
|
C between data and coefficients
|
||||||
|
C
|
||||||
|
SA = SA/N1
|
||||||
|
SX = SX/N1
|
||||||
|
SSA = ZERO
|
||||||
|
SSX = ZERO
|
||||||
|
SAX = ZERO
|
||||||
|
J = N
|
||||||
|
DO 60 I = 1, N1
|
||||||
|
IF (I .NE. J) THEN
|
||||||
|
ASA = SIGN(1, I - J) * A(MIN(I, J)) - SA
|
||||||
|
ELSE
|
||||||
|
ASA = -SA
|
||||||
|
END IF
|
||||||
|
XSX = X(I)/RANGE - SX
|
||||||
|
SSA = SSA + ASA * ASA
|
||||||
|
SSX = SSX + XSX * XSX
|
||||||
|
SAX = SAX + ASA * XSX
|
||||||
|
J = J - 1
|
||||||
|
60 CONTINUE
|
||||||
|
C
|
||||||
|
C W1 equals (1-W) calculated to avoid excessive rounding error
|
||||||
|
C for W very near 1 (a potential problem in very large samples)
|
||||||
|
C
|
||||||
|
SSASSX = SQRT(SSA * SSX)
|
||||||
|
W1 = (SSASSX - SAX) * (SSASSX + SAX)/(SSA * SSX)
|
||||||
|
70 W = ONE - W1
|
||||||
|
C
|
||||||
|
C Calculate significance level for W (exact for N=3)
|
||||||
|
C
|
||||||
|
IF (N .EQ. 3) THEN
|
||||||
|
PW = PI6 * (ASIN(SQRT(W)) - STQR)
|
||||||
|
RETURN
|
||||||
|
END IF
|
||||||
|
Y = LOG(W1)
|
||||||
|
XX = LOG(AN)
|
||||||
|
M = ZERO
|
||||||
|
S = ONE
|
||||||
|
IF (N .LE. 11) THEN
|
||||||
|
GAMMA = POLY(G, 2, AN)
|
||||||
|
IF (Y .GE. GAMMA) THEN
|
||||||
|
PW = SMALL
|
||||||
|
RETURN
|
||||||
|
END IF
|
||||||
|
Y = -LOG(GAMMA - Y)
|
||||||
|
M = POLY(C3, 4, AN)
|
||||||
|
S = EXP(POLY(C4, 4, AN))
|
||||||
|
ELSE
|
||||||
|
M = POLY(C5, 4, XX)
|
||||||
|
S = EXP(POLY(C6, 3, XX))
|
||||||
|
END IF
|
||||||
|
IF (NCENS .GT. 0) THEN
|
||||||
|
C
|
||||||
|
C Censoring by proportion NCENS/N. Calculate mean and sd
|
||||||
|
C of normal equivalent deviate of W.
|
||||||
|
C
|
||||||
|
LD = -LOG(DELTA)
|
||||||
|
BF = ONE + XX * BF1
|
||||||
|
Z90F = Z90 + BF * POLY(C7, 2, XX90 ** XX) ** LD
|
||||||
|
Z95F = Z95 + BF * POLY(C8, 2, XX95 ** XX) ** LD
|
||||||
|
Z99F = Z99 + BF * POLY(C9, 2, XX) ** LD
|
||||||
|
C
|
||||||
|
C Regress Z90F,...,Z99F on normal deviates Z90,...,Z99 to get
|
||||||
|
C pseudo-mean and pseudo-sd of z as the slope and intercept
|
||||||
|
C
|
||||||
|
ZFM = (Z90F + Z95F + Z99F)/THREE
|
||||||
|
ZSD = (Z90*(Z90F-ZFM)+Z95*(Z95F-ZFM)+Z99*(Z99F-ZFM))/ZSS
|
||||||
|
ZBAR = ZFM - ZSD * ZM
|
||||||
|
M = M + ZBAR * S
|
||||||
|
S = S * ZSD
|
||||||
|
END IF
|
||||||
|
PW = REAL(ALNORM(DBLE((Y - M)/S), UPPER))
|
||||||
|
C
|
||||||
|
RETURN
|
||||||
|
END
|
||||||
|
|
||||||
|
DOUBLE PRECISION FUNCTION ALNORM(X, UPPER)
|
||||||
|
C
|
||||||
|
C EVALUATES THE TAIL AREA OF THE STANDARDIZED NORMAL CURVE FROM
|
||||||
|
C X TO INFINITY IF UPPER IS .TRUE. OR FROM MINUS INFINITY TO X
|
||||||
|
C IF UPPER IS .FALSE.
|
||||||
|
C
|
||||||
|
C NOTE NOVEMBER 2001: MODIFY UTZERO. ALTHOUGH NOT NECESSARY
|
||||||
|
C WHEN USING ALNORM FOR SIMPLY COMPUTING PERCENT POINTS,
|
||||||
|
C EXTENDING RANGE IS HELPFUL FOR USE WITH FUNCTIONS THAT
|
||||||
|
C USE ALNORM IN INTERMEDIATE COMPUTATIONS.
|
||||||
|
C
|
||||||
|
DOUBLE PRECISION LTONE,UTZERO,ZERO,HALF,ONE,CON,
|
||||||
|
$ A1,A2,A3,A4,A5,A6,A7,B1,B2,
|
||||||
|
$ B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,X,Y,Z,ZEXP
|
||||||
|
LOGICAL UPPER,UP
|
||||||
|
C
|
||||||
|
C LTONE AND UTZERO MUST BE SET TO SUIT THE PARTICULAR COMPUTER
|
||||||
|
C
|
||||||
|
CCCCC DATA LTONE, UTZERO /7.0D0, 18.66D0/
|
||||||
|
DATA LTONE, UTZERO /7.0D0, 38.00D0/
|
||||||
|
DATA ZERO,HALF,ONE,CON /0.0D0,0.5D0,1.0D0,1.28D0/
|
||||||
|
DATA A1, A2, A3,
|
||||||
|
$ A4, A5, A6,
|
||||||
|
$ A7
|
||||||
|
$ /0.398942280444D0, 0.399903438504D0, 5.75885480458D0,
|
||||||
|
$ 29.8213557808D0, 2.62433121679D0, 48.6959930692D0,
|
||||||
|
$ 5.92885724438D0/
|
||||||
|
DATA B1, B2, B3,
|
||||||
|
$ B4, B5, B6,
|
||||||
|
$ B7, B8, B9,
|
||||||
|
$ B10, B11, B12
|
||||||
|
$ /0.398942280385D0, 3.8052D-8, 1.00000615302D0,
|
||||||
|
$ 3.98064794D-4, 1.98615381364D0, 0.151679116635D0,
|
||||||
|
$ 5.29330324926D0, 4.8385912808D0, 15.1508972451D0,
|
||||||
|
$ 0.742380924027D0, 30.789933034D0, 3.99019417011D0/
|
||||||
|
C
|
||||||
|
ZEXP(Z) = DEXP(Z)
|
||||||
|
C
|
||||||
|
UP = UPPER
|
||||||
|
Z = X
|
||||||
|
IF (Z .GE. ZERO) GOTO 10
|
||||||
|
UP = .NOT. UP
|
||||||
|
Z = -Z
|
||||||
|
10 IF (Z .LE. LTONE .OR. UP .AND. Z .LE. UTZERO) GOTO 20
|
||||||
|
ALNORM = ZERO
|
||||||
|
GOTO 40
|
||||||
|
20 Y = HALF * Z * Z
|
||||||
|
IF (Z .GT. CON) GOTO 30
|
||||||
|
C
|
||||||
|
ALNORM = HALF - Z * (A1- A2 * Y / (Y + A3- A4 / (Y + A5 + A6 /
|
||||||
|
$ (Y + A7))))
|
||||||
|
GOTO 40
|
||||||
|
C
|
||||||
|
30 ALNORM = B1* ZEXP(-Y)/(Z - B2 + B3/ (Z +B4 +B5/(Z -B6 +B7/
|
||||||
|
$ (Z +B8 -B9/ (Z +B10 +B11/ (Z + B12))))))
|
||||||
|
C
|
||||||
|
40 IF (.NOT. UP) ALNORM = ONE - ALNORM
|
||||||
|
RETURN
|
||||||
|
END
|
||||||
|
|
||||||
|
REAL FUNCTION PPND(P, IFAULT)
|
||||||
|
C
|
||||||
|
C ALGORITHM AS 111 APPL. STATIST. (1977), VOL.26, NO.1
|
||||||
|
C
|
||||||
|
C PRODUCES NORMAL DEVIATE CORRESPONDING TO LOWER TAIL AREA OF P
|
||||||
|
C REAL VERSION FOR EPS = 2 **(-31)
|
||||||
|
C THE HASH SUMS ARE THE SUMS OF THE MODULI OF THE COEFFICIENTS
|
||||||
|
C THEY HAVE NO INHERENT MEANINGS BUT ARE INCLUDED FOR USE IN
|
||||||
|
C CHECKING TRANSCRIPTIONS
|
||||||
|
C STANDARD FUNCTIONS ABS, ALOG AND SQRT ARE USED
|
||||||
|
C
|
||||||
|
C NOTE: WE COULD USE DATAPLOT NORPPF, BUT VARIOUS APPLIED
|
||||||
|
C STATISTICS ALGORITHMS USE THIS. SO WE PROVIDE IT TO
|
||||||
|
C MAKE USE OF APPLIED STATISTICS ALGORITHMS EASIER.
|
||||||
|
C
|
||||||
|
REAL ZERO, SPLIT, HALF, ONE
|
||||||
|
REAL A0, A1, A2, A3, B1, B2, B3, B4, C0, C1, C2, C3, D1, D2
|
||||||
|
REAL P, Q, R
|
||||||
|
INTEGER IFAULT
|
||||||
|
DATA ZERO /0.0E0/, HALF/0.5E0/, ONE/1.0E0/
|
||||||
|
DATA SPLIT /0.42E0/
|
||||||
|
DATA A0 / 2.50662823884E0/
|
||||||
|
DATA A1 / -18.61500062529E0/
|
||||||
|
DATA A2 / 41.39119773534E0/
|
||||||
|
DATA A3 / -25.44106049637E0/
|
||||||
|
DATA B1 / -8.47351093090E0/
|
||||||
|
DATA B2 / 23.08336743743E0/
|
||||||
|
DATA B3 / -21.06224101826E0/
|
||||||
|
DATA B4 / 3.13082909833E0/
|
||||||
|
DATA C0 / -2.78718931138E0/
|
||||||
|
DATA C1 / -2.29796479134E0/
|
||||||
|
DATA C2 / 4.85014127135E0/
|
||||||
|
DATA C3 / 2.32121276858E0/
|
||||||
|
DATA D1 / 3.54388924762E0/
|
||||||
|
DATA D2 / 1.63706781897E0/
|
||||||
|
C
|
||||||
|
IFAULT = 0
|
||||||
|
Q = P - HALF
|
||||||
|
IF (ABS(Q) .GT. SPLIT) GOTO 1
|
||||||
|
R = Q*Q
|
||||||
|
PPND = Q * (((A3*R + A2)*R + A1) * R + A0) /
|
||||||
|
* ((((B4*R + B3)*R + B2) * R + B1) * R + ONE)
|
||||||
|
RETURN
|
||||||
|
1 R = P
|
||||||
|
IF (Q .GT. ZERO)R = ONE - P
|
||||||
|
IF (R .LE. ZERO) GOTO 2
|
||||||
|
R = SQRT(-ALOG(R))
|
||||||
|
PPND = (((C3 * R + C2) * R + C1) * R + C0)/
|
||||||
|
* ((D2*R + D1) * R + ONE)
|
||||||
|
IF (Q .LT. ZERO) PPND = -PPND
|
||||||
|
RETURN
|
||||||
|
2 IFAULT = 1
|
||||||
|
PPND = ZERO
|
||||||
|
RETURN
|
||||||
|
END
|
||||||
|
|
||||||
|
REAL FUNCTION POLY(C, NORD, X)
|
||||||
|
C
|
||||||
|
C
|
||||||
|
C ALGORITHM AS 181.2 APPL. STATIST. (1982) VOL. 31, NO. 2
|
||||||
|
C
|
||||||
|
C CALCULATES THE ALGEBRAIC POLYNOMIAL OF ORDER NORED-1 WITH
|
||||||
|
C ARRAY OF COEFFICIENTS C. ZERO ORDER COEFFICIENT IS C(1)
|
||||||
|
C
|
||||||
|
REAL C(NORD)
|
||||||
|
POLY = C(1)
|
||||||
|
IF(NORD.EQ.1) RETURN
|
||||||
|
P = X*C(NORD)
|
||||||
|
IF(NORD.EQ.2) GOTO 20
|
||||||
|
N2 = NORD-2
|
||||||
|
J = N2+1
|
||||||
|
DO 10 I = 1,N2
|
||||||
|
P = (P+C(J))*X
|
||||||
|
J = J-1
|
||||||
|
10 CONTINUE
|
||||||
|
20 POLY = POLY+P
|
||||||
|
RETURN
|
||||||
|
END
|
Loading…
Reference in New Issue