GP_Image_Test/src/main.cpp

475 lines
14 KiB
C++

#include <iostream>
#include <blt/std/allocator.h>
#include <blt/gfx/window.h>
#include <blt/gfx/state.h>
#include <blt/gfx/stb/stb_image.h>
#include <functions.h>
#include "blt/gfx/renderer/resource_manager.h"
#include "blt/gfx/renderer/batch_2d_renderer.h"
#include "blt/std/assert.h"
#include "blt/std/system.h"
#include "imgui.h"
#include "extern.h"
#include "blt/std/format.h"
#include "blt/profiling/profiler_v2.h"
#include <variant>
#include <random>
#include <queue>
#include <stack>
#include <config.h>
#include <gp.h>
blt::gfx::matrix_state_manager global_matrices;
blt::gfx::resource_manager resources;
blt::gfx::batch_renderer_2d renderer_2d(resources);
class tree
{
public:
struct search_result_t
{
node* child;
node* parent;
blt::size_t index;
};
struct crossover_result_t
{
std::unique_ptr<tree> c1;
std::unique_ptr<tree> c2;
};
struct mutation_result_t
{
std::unique_ptr<tree> c;
};
private:
std::unique_ptr<node, node_deleter> root = nullptr;
explicit tree(node* root): root(root)
{}
void normalize_image()
{
float mx = 0, my = 0, mz = 0;
float sx = 0, sy = 0, sz = 0;
for (auto& v : root->getImage().getData())
{
for (int i = 0; i < 3; i++)
{
if (std::isnan(v[i]))
{
v[i] = 0.0f;
}
}
mx = std::max(v.x(), mx);
my = std::max(v.y(), my);
mz = std::max(v.z(), mz);
sx = std::min(v.x(), sx);
sy = std::min(v.y(), sy);
sz = std::min(v.z(), sz);
}
for (auto& v : root->getImage().getData())
{
if (mx - sx != 0)
v[0] = (v.x() - sx) / (mx - sx);
if (my - sy != 0)
v[1] = (v.y() - sy) / (my - sy);
if (mz - sz != 0)
v[2] = (v.z() - sz) / (mz - sz);
}
}
search_result_t select_random_child()
{
static std::random_device dev;
static std::mt19937_64 engine{dev()};
std::uniform_int_distribution select(0, 3);
node* current = root.get();
node* parent = nullptr;
blt::size_t index = 0;
while (true)
{
std::uniform_int_distribution<size_t> children(0, current->argc - 1);
if (select(engine) == 0 || current->argc == 0)
break;
index = children(engine);
auto* next = current->sub_nodes[index];
if (next == nullptr)
break;
parent = current;
current = next;
}
return {current, parent, index};
}
public:
std::unique_ptr<tree> clone()
{
return std::make_unique<tree>(tree{root->clone()});
}
static std::unique_ptr<tree> construct_random_tree()
{
return std::make_unique<tree>(tree{node::construct_random_tree()});
}
static blt::size_t depth(node* root_node)
{
// depth -> node
std::stack<std::pair<blt::size_t, node*>> stack;
blt::size_t max_depth = 0;
stack.emplace(0, root_node);
while (!stack.empty())
{
auto top = stack.top();
auto* node = top.second;
auto depth = top.first;
stack.pop();
max_depth = std::max(max_depth, depth);
for (blt::size_t i = 0; i < node->argc; i++)
{
if (node->sub_nodes[i] != nullptr)
{
stack.emplace(depth + 1, node->sub_nodes[i]);
}
}
}
return max_depth;
}
static std::optional<crossover_result_t> crossover(tree* p1, tree* p2)
{
if (p1 == nullptr || p2 == nullptr)
return {};
auto c1 = p1->clone();
auto c2 = p2->clone();
auto n1 = c1->select_random_child();
auto n2 = c2->select_random_child();
if (n1.parent == nullptr || n2.parent == nullptr)
return {};
const auto& p1_allowed = function_arg_allowed_set_map[to_underlying(n1.parent->type)][n1.index];
const auto& p2_allowed = function_arg_allowed_set_map[to_underlying(n2.parent->type)][n2.index];
if (!p1_allowed.contains(n2.child->type))
return {};
if (!p2_allowed.contains(n1.child->type))
return {};
n1.parent->sub_nodes[n1.index] = n2.child;
n2.parent->sub_nodes[n2.index] = n1.child;
return crossover_result_t{std::move(c1), std::move(c2)};
}
static std::optional<mutation_result_t> mutate(tree* p)
{
if (p == nullptr)
return {};
static std::random_device dev;
static std::mt19937_64 engine{dev()};
std::uniform_int_distribution choice(0, 1);
auto c = p->clone();
auto n = c->select_random_child();
if (n.parent == nullptr)
return {};
auto d = depth(n.child);
node* new_subtree = node::construct_random_tree(d + 1);
n.parent->sub_nodes[n.index] = new_subtree;
destroyNode(n.child);
return mutation_result_t{std::move(c)};
}
void evaluate()
{
root->evaluate_tree();
normalize_image();
}
image& getImage()
{
return root->getImage();
}
bool hasImage()
{
return root->hasImage();
}
bool hasTree()
{
return root != nullptr;
}
float fitness()
{
auto& img = root->getImage();
return eval_DNF_SW(img) * eval_DNF_SW_1(img) * static_cast<float>(std::min(depth(root.get()), 5ul));
}
void printTree()
{
root->printTree();
}
};
class gp_population
{
public:
struct gp_i
{
std::unique_ptr<tree> t = nullptr;
float fitness = 0;
};
blt::size_t best = -1;
private:
std::array<gp_i, POPULATION_SIZE> pop;
public:
gp_population() = default;
static blt::size_t choice()
{
static std::random_device dev;
static std::mt19937_64 engine{dev()};
static std::uniform_int_distribution c(0, POPULATION_SIZE - 1);
return c(engine);
}
void init()
{
for (auto& v : pop)
v = {tree::construct_random_tree()};
evaluate_population();
}
tree* select()
{
tree* n = nullptr;
float fitness = -2 * 8192;
//BLT_TRACE("With inital %f", fitness);
for (int i = 0; i < TOURNAMENT_SIZE; i++)
{
blt::size_t index = 0;
do
{
index = choice();
auto& v = pop[index];
if (v.fitness >= fitness)
{
n = v.t.get();
fitness = v.fitness;
}
//BLT_TRACE("%d: %p -> %f ? %p -> %f || %d %d", index, v.t.get(), v.fitness, n, fitness, n != v.t.get(), v.fitness > fitness);
} while (n == pop[index].t.get());
}
//BLT_DEBUG("%p -> %f", n, fitness);
BLT_ASSERT(n != nullptr);
return n;
}
void run_step()
{
std::array<gp_i, POPULATION_SIZE> new_pop;
static std::random_device dev;
static std::mt19937_64 engine{dev()};
static std::uniform_real_distribution rand(0.0, 1.0);
auto b = get_best();
new_pop[0] = {pop[b.first].t->clone(), b.second};
blt::size_t insert_pos = 1;
blt::size_t crossover_count = 0;
blt::size_t mutation_count = 0;
BLT_TRACE("Running Crossover");
for (blt::size_t i = 0; i < POPULATION_SIZE; i++)
{
if (rand(engine) < CROSSOVER_RATE)
{
auto* p1 = select();
auto* p2 = select();
if (auto r = tree::crossover(p1, p2))
{
new_pop[insert_pos++] = {std::move(r->c1)};
new_pop[insert_pos++] = {std::move(r->c2)};
crossover_count++;
}
}
}
BLT_TRACE("Running Mutation");
for (blt::size_t i = 0; i < POPULATION_SIZE; i++)
{
if (rand(engine) < MUTATION_RATE)
{
auto* p1 = select();
if (auto r = tree::mutate(p1))
{
new_pop[insert_pos++] = gp_i{std::move(r->c), 0};
mutation_count++;
}
}
}
while (insert_pos < POPULATION_SIZE)
{
new_pop[insert_pos++] = {select()->clone()};
}
pop = std::move(new_pop);
BLT_TRACE("ran %d crossovers and %d mutations", crossover_count, mutation_count);
}
void evaluate_population()
{
BLT_TRACE("Running Eval");
for (auto& v : pop)
{
v.t->evaluate();
v.fitness = v.t->fitness();
}
BLT_TRACE("Complete");
}
image& display(blt::size_t i)
{
return pop[i].t->getImage();
}
std::pair<blt::size_t, float> get_best()
{
blt::size_t i = 0;
float fitness = -2 * 8192;
for (blt::size_t j = 0; j < POPULATION_SIZE; j++)
{
if (pop[j].fitness > fitness)
{
i = j;
fitness = pop[j].fitness;
}
}
best = i;
return {i, fitness};
}
image& display_best()
{
return display(get_best().first);
}
float best_fitness()
{
return get_best().second;
}
void print_best()
{
pop[get_best().first].t->printTree();
}
};
gp_population pop;
blt::gfx::texture_gl2D* texture;
void print_bits(float f)
{
auto u = blt::mem::type_cast<blt::u32>(f);
for (size_t i = 31; i > 0; i--)
{
std::cout << ((u >> i) & 0x1);
if (i % 8 == 0)
std::cout << ", ";
else if (i % 4 == 0)
std::cout << " ";
}
std::cout << std::endl;
}
void init()
{
global_matrices.create_internals();
renderer_2d.create();
texture = new blt::gfx::texture_gl2D(width, height);
resources.set("img", texture);
resources.enqueue("../libraries/BLT-With-Graphics-Template/resources/textures/parkerfemBOY.png", "cum");
resources.load_resources();
}
float best = 0;
void update(std::int32_t w, std::int32_t h)
{
global_matrices.update_perspectives(w, h, 90, 0.1, 2000);
glDisable(GL_BLEND);
if (ImGui::Button("Regenerate"))
{
BLT_INFO("Regen tree");
pop = {};
pop.init();
best = pop.best_fitness();
}
if (ImGui::Button("Run Step"))
{
BLT_INFO("Running Step");
pop.run_step();
BLT_INFO("Evaluating Population");
pop.evaluate_population();
best = pop.best_fitness();
}
if (ImGui::Button("Display"))
{
BLT_INFO("Uploading");
texture->upload((void*) pop.display_best().getData().data(), GL_RGB, 0, 0, 0, -1, -1, GL_FLOAT);
}
if (ImGui::Button("Print"))
{
pop.print_best();
}
ImGui::Text("Best Fitness: %f", best);
auto data = blt::system::get_memory_process();
ImGui::Text("Physical Memory Usage: %s", blt::string::fromBytes(data.resident).c_str());
ImGui::Text("Shared Memory Usage: %s", blt::string::fromBytes(data.shared).c_str());
ImGui::Text("Total Memory Usage: %s", blt::string::fromBytes(data.size).c_str());
auto lw = 512.0f;
auto lh = 512.0f;
//renderer_2d.drawRectangle(blt::vec4{0.5, 0.0, 1.0, 1.0},
// {static_cast<float>(w) / 2.0f, static_cast<float>(h) / 2.0f, static_cast<float>(w), static_cast<float>(h)});
renderer_2d.drawRectangle("img", {static_cast<float>(w) / 2.0f, static_cast<float>(h) / 2.0f, lw, lh});
global_matrices.update();
renderer_2d.render();
}
int main()
{
// auto& funcs = function_arg_allowed_map[to_underlying(function_t::IF)];
// for (auto v : blt::enumerate(funcs))
// for (auto f : v.second)
// std::cout << "arg " << v.first << ": " << function_name_map[to_underlying(f)] << std::endl;
//shapiro_test_run();
blt::gfx::init(blt::gfx::window_data{"Window of GP test", init, update}.setSyncInterval(1));
global_matrices.cleanup();
resources.cleanup();
renderer_2d.cleanup();
blt::gfx::cleanup();
return 0;
}