Insane_DNS/libraries/asio-1.28.1/include/asio/impl/thread_pool.hpp

355 lines
10 KiB
C++
Raw Permalink Normal View History

2023-10-24 21:59:30 -04:00
//
// impl/thread_pool.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_IMPL_THREAD_POOL_HPP
#define ASIO_IMPL_THREAD_POOL_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/blocking_executor_op.hpp"
#include "asio/detail/bulk_executor_op.hpp"
#include "asio/detail/executor_op.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/execution_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
inline thread_pool::executor_type
thread_pool::get_executor() ASIO_NOEXCEPT
{
return executor_type(*this);
}
inline thread_pool::executor_type
thread_pool::executor() ASIO_NOEXCEPT
{
return executor_type(*this);
}
inline thread_pool::scheduler_type
thread_pool::scheduler() ASIO_NOEXCEPT
{
return scheduler_type(*this);
}
template <typename Allocator, unsigned int Bits>
thread_pool::basic_executor_type<Allocator, Bits>&
thread_pool::basic_executor_type<Allocator, Bits>::operator=(
const basic_executor_type& other) ASIO_NOEXCEPT
{
if (this != &other)
{
thread_pool* old_thread_pool = pool_;
pool_ = other.pool_;
allocator_ = other.allocator_;
bits_ = other.bits_;
if (Bits & outstanding_work_tracked)
{
if (pool_)
pool_->scheduler_.work_started();
if (old_thread_pool)
old_thread_pool->scheduler_.work_finished();
}
}
return *this;
}
#if defined(ASIO_HAS_MOVE)
template <typename Allocator, unsigned int Bits>
thread_pool::basic_executor_type<Allocator, Bits>&
thread_pool::basic_executor_type<Allocator, Bits>::operator=(
basic_executor_type&& other) ASIO_NOEXCEPT
{
if (this != &other)
{
thread_pool* old_thread_pool = pool_;
pool_ = other.pool_;
allocator_ = std::move(other.allocator_);
bits_ = other.bits_;
if (Bits & outstanding_work_tracked)
{
other.pool_ = 0;
if (old_thread_pool)
old_thread_pool->scheduler_.work_finished();
}
}
return *this;
}
#endif // defined(ASIO_HAS_MOVE)
template <typename Allocator, unsigned int Bits>
inline bool thread_pool::basic_executor_type<Allocator,
Bits>::running_in_this_thread() const ASIO_NOEXCEPT
{
return pool_->scheduler_.can_dispatch();
}
template <typename Allocator, unsigned int Bits>
template <typename Function>
void thread_pool::basic_executor_type<Allocator,
Bits>::do_execute(ASIO_MOVE_ARG(Function) f, false_type) const
{
typedef typename decay<Function>::type function_type;
// Invoke immediately if the blocking.possibly property is enabled and we are
// already inside the thread pool.
if ((bits_ & blocking_never) == 0 && pool_->scheduler_.can_dispatch())
{
// Make a local, non-const copy of the function.
function_type tmp(ASIO_MOVE_CAST(Function)(f));
#if defined(ASIO_HAS_STD_EXCEPTION_PTR) \
&& !defined(ASIO_NO_EXCEPTIONS)
try
{
#endif // defined(ASIO_HAS_STD_EXCEPTION_PTR)
// && !defined(ASIO_NO_EXCEPTIONS)
detail::fenced_block b(detail::fenced_block::full);
asio_handler_invoke_helpers::invoke(tmp, tmp);
return;
#if defined(ASIO_HAS_STD_EXCEPTION_PTR) \
&& !defined(ASIO_NO_EXCEPTIONS)
}
catch (...)
{
pool_->scheduler_.capture_current_exception();
return;
}
#endif // defined(ASIO_HAS_STD_EXCEPTION_PTR)
// && !defined(ASIO_NO_EXCEPTIONS)
}
// Allocate and construct an operation to wrap the function.
typedef detail::executor_op<function_type, Allocator> op;
typename op::ptr p = { detail::addressof(allocator_),
op::ptr::allocate(allocator_), 0 };
p.p = new (p.v) op(ASIO_MOVE_CAST(Function)(f), allocator_);
if ((bits_ & relationship_continuation) != 0)
{
ASIO_HANDLER_CREATION((*pool_, *p.p,
"thread_pool", pool_, 0, "execute(blk=never,rel=cont)"));
}
else
{
ASIO_HANDLER_CREATION((*pool_, *p.p,
"thread_pool", pool_, 0, "execute(blk=never,rel=fork)"));
}
pool_->scheduler_.post_immediate_completion(p.p,
(bits_ & relationship_continuation) != 0);
p.v = p.p = 0;
}
template <typename Allocator, unsigned int Bits>
template <typename Function>
void thread_pool::basic_executor_type<Allocator,
Bits>::do_execute(ASIO_MOVE_ARG(Function) f, true_type) const
{
// Obtain a non-const instance of the function.
detail::non_const_lvalue<Function> f2(f);
// Invoke immediately if we are already inside the thread pool.
if (pool_->scheduler_.can_dispatch())
{
#if !defined(ASIO_NO_EXCEPTIONS)
try
{
#endif // !defined(ASIO_NO_EXCEPTIONS)
detail::fenced_block b(detail::fenced_block::full);
asio_handler_invoke_helpers::invoke(f2.value, f2.value);
return;
#if !defined(ASIO_NO_EXCEPTIONS)
}
catch (...)
{
std::terminate();
}
#endif // !defined(ASIO_NO_EXCEPTIONS)
}
// Construct an operation to wrap the function.
typedef typename decay<Function>::type function_type;
detail::blocking_executor_op<function_type> op(f2.value);
ASIO_HANDLER_CREATION((*pool_, op,
"thread_pool", pool_, 0, "execute(blk=always)"));
pool_->scheduler_.post_immediate_completion(&op, false);
op.wait();
}
template <typename Allocator, unsigned int Bits>
template <typename Function>
void thread_pool::basic_executor_type<Allocator, Bits>::do_bulk_execute(
ASIO_MOVE_ARG(Function) f, std::size_t n, false_type) const
{
typedef typename decay<Function>::type function_type;
typedef detail::bulk_executor_op<function_type, Allocator> op;
// Allocate and construct operations to wrap the function.
detail::op_queue<detail::scheduler_operation> ops;
for (std::size_t i = 0; i < n; ++i)
{
typename op::ptr p = { detail::addressof(allocator_),
op::ptr::allocate(allocator_), 0 };
p.p = new (p.v) op(ASIO_MOVE_CAST(Function)(f), allocator_, i);
ops.push(p.p);
if ((bits_ & relationship_continuation) != 0)
{
ASIO_HANDLER_CREATION((*pool_, *p.p,
"thread_pool", pool_, 0, "bulk_execute(blk=never,rel=cont)"));
}
else
{
ASIO_HANDLER_CREATION((*pool_, *p.p,
"thread_pool", pool_, 0, "bulk)execute(blk=never,rel=fork)"));
}
p.v = p.p = 0;
}
pool_->scheduler_.post_immediate_completions(n,
ops, (bits_ & relationship_continuation) != 0);
}
template <typename Function>
struct thread_pool_always_blocking_function_adapter
{
typename decay<Function>::type* f;
std::size_t n;
void operator()()
{
for (std::size_t i = 0; i < n; ++i)
{
(*f)(i);
}
}
};
template <typename Allocator, unsigned int Bits>
template <typename Function>
void thread_pool::basic_executor_type<Allocator, Bits>::do_bulk_execute(
ASIO_MOVE_ARG(Function) f, std::size_t n, true_type) const
{
// Obtain a non-const instance of the function.
detail::non_const_lvalue<Function> f2(f);
thread_pool_always_blocking_function_adapter<Function>
adapter = { detail::addressof(f2.value), n };
this->do_execute(adapter, true_type());
}
#if !defined(ASIO_NO_TS_EXECUTORS)
template <typename Allocator, unsigned int Bits>
inline thread_pool& thread_pool::basic_executor_type<
Allocator, Bits>::context() const ASIO_NOEXCEPT
{
return *pool_;
}
template <typename Allocator, unsigned int Bits>
inline void thread_pool::basic_executor_type<Allocator,
Bits>::on_work_started() const ASIO_NOEXCEPT
{
pool_->scheduler_.work_started();
}
template <typename Allocator, unsigned int Bits>
inline void thread_pool::basic_executor_type<Allocator,
Bits>::on_work_finished() const ASIO_NOEXCEPT
{
pool_->scheduler_.work_finished();
}
template <typename Allocator, unsigned int Bits>
template <typename Function, typename OtherAllocator>
void thread_pool::basic_executor_type<Allocator, Bits>::dispatch(
ASIO_MOVE_ARG(Function) f, const OtherAllocator& a) const
{
typedef typename decay<Function>::type function_type;
// Invoke immediately if we are already inside the thread pool.
if (pool_->scheduler_.can_dispatch())
{
// Make a local, non-const copy of the function.
function_type tmp(ASIO_MOVE_CAST(Function)(f));
detail::fenced_block b(detail::fenced_block::full);
asio_handler_invoke_helpers::invoke(tmp, tmp);
return;
}
// Allocate and construct an operation to wrap the function.
typedef detail::executor_op<function_type, OtherAllocator> op;
typename op::ptr p = { detail::addressof(a), op::ptr::allocate(a), 0 };
p.p = new (p.v) op(ASIO_MOVE_CAST(Function)(f), a);
ASIO_HANDLER_CREATION((*pool_, *p.p,
"thread_pool", pool_, 0, "dispatch"));
pool_->scheduler_.post_immediate_completion(p.p, false);
p.v = p.p = 0;
}
template <typename Allocator, unsigned int Bits>
template <typename Function, typename OtherAllocator>
void thread_pool::basic_executor_type<Allocator, Bits>::post(
ASIO_MOVE_ARG(Function) f, const OtherAllocator& a) const
{
typedef typename decay<Function>::type function_type;
// Allocate and construct an operation to wrap the function.
typedef detail::executor_op<function_type, OtherAllocator> op;
typename op::ptr p = { detail::addressof(a), op::ptr::allocate(a), 0 };
p.p = new (p.v) op(ASIO_MOVE_CAST(Function)(f), a);
ASIO_HANDLER_CREATION((*pool_, *p.p,
"thread_pool", pool_, 0, "post"));
pool_->scheduler_.post_immediate_completion(p.p, false);
p.v = p.p = 0;
}
template <typename Allocator, unsigned int Bits>
template <typename Function, typename OtherAllocator>
void thread_pool::basic_executor_type<Allocator, Bits>::defer(
ASIO_MOVE_ARG(Function) f, const OtherAllocator& a) const
{
typedef typename decay<Function>::type function_type;
// Allocate and construct an operation to wrap the function.
typedef detail::executor_op<function_type, OtherAllocator> op;
typename op::ptr p = { detail::addressof(a), op::ptr::allocate(a), 0 };
p.p = new (p.v) op(ASIO_MOVE_CAST(Function)(f), a);
ASIO_HANDLER_CREATION((*pool_, *p.p,
"thread_pool", pool_, 0, "defer"));
pool_->scheduler_.post_immediate_completion(p.p, true);
p.v = p.p = 0;
}
#endif // !defined(ASIO_NO_TS_EXECUTORS)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_IMPL_THREAD_POOL_HPP