// // composed_8.cpp // ~~~~~~~~~~~~~~ // // Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using asio::ip::tcp; // NOTE: This example requires the new asio::async_compose function. For // an example that works with the Networking TS style of completion tokens, // please see an older version of asio. //------------------------------------------------------------------------------ // This composed operation shows composition of multiple underlying operations, // using asio's stackless coroutines support to express the flow of control. It // automatically serialises a message, using its I/O streams insertion // operator, before sending it N times on the socket. To do this, it must // allocate a buffer for the encoded message and ensure this buffer's validity // until all underlying async_write operation complete. A one second delay is // inserted prior to each write operation, using a steady_timer. #include template auto async_write_messages(tcp::socket& socket, const T& message, std::size_t repeat_count, CompletionToken&& token) // The return type of the initiating function is deduced from the combination // of: // // - the CompletionToken type, // - the completion handler signature, and // - the asynchronous operation's initiation function object. // // When the completion token is a simple callback, the return type is always // void. In this example, when the completion token is asio::yield_context // (used for stackful coroutines) the return type would also be void, as // there is no non-error argument to the completion handler. When the // completion token is asio::use_future it would be std::future. When // the completion token is asio::deferred, the return type differs for each // asynchronous operation. // // In C++14 we can omit the return type as it is automatically deduced from // the return type of asio::async_compose. { // Encode the message and copy it into an allocated buffer. The buffer will // be maintained for the lifetime of the composed asynchronous operation. std::ostringstream os; os << message; std::unique_ptr encoded_message(new std::string(os.str())); // Create a steady_timer to be used for the delay between messages. std::unique_ptr delay_timer( new asio::steady_timer(socket.get_executor())); // The asio::async_compose function takes: // // - our asynchronous operation implementation, // - the completion token, // - the completion handler signature, and // - any I/O objects (or executors) used by the operation // // It then wraps our implementation, which is implemented here as a stackless // coroutine in a lambda, in an intermediate completion handler that meets the // requirements of a conforming asynchronous operation. This includes // tracking outstanding work against the I/O executors associated with the // operation (in this example, this is the socket's executor). // // The first argument to our lambda is a reference to the enclosing // intermediate completion handler. This intermediate completion handler is // provided for us by the asio::async_compose function, and takes care // of all the details required to implement a conforming asynchronous // operation. When calling an underlying asynchronous operation, we pass it // this enclosing intermediate completion handler as the completion token. // // All arguments to our lambda after the first must be defaulted to allow the // state machine to be started, as well as to allow the completion handler to // match the completion signature of both the async_write and // steady_timer::async_wait operations. return asio::async_compose< CompletionToken, void(std::error_code)>( [ // The implementation holds a reference to the socket as it is used for // multiple async_write operations. &socket, // The allocated buffer for the encoded message. The std::unique_ptr // smart pointer is move-only, and as a consequence our lambda // implementation is also move-only. encoded_message = std::move(encoded_message), // The repeat count remaining. repeat_count, // A steady timer used for introducing a delay. delay_timer = std::move(delay_timer), // The coroutine state. coro = asio::coroutine() ] ( auto& self, const std::error_code& error = {}, std::size_t = 0 ) mutable { reenter (coro) { while (repeat_count > 0) { --repeat_count; delay_timer->expires_after(std::chrono::seconds(1)); yield delay_timer->async_wait(std::move(self)); if (error) break; yield asio::async_write(socket, asio::buffer(*encoded_message), std::move(self)); if (error) break; } // Deallocate the encoded message and delay timer before calling the // user-supplied completion handler. encoded_message.reset(); delay_timer.reset(); // Call the user-supplied handler with the result of the operation. self.complete(error); } }, token, socket); } #include //------------------------------------------------------------------------------ void test_callback() { asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using a lambda as a callback. async_write_messages(socket, "Testing callback\r\n", 5, [](const std::error_code& error) { if (!error) { std::cout << "Messages sent\n"; } else { std::cout << "Error: " << error.message() << "\n"; } }); io_context.run(); } //------------------------------------------------------------------------------ void test_deferred() { asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using the deferred completion token. This // token causes the operation's initiating function to package up the // operation with its arguments to return a function object, which may then be // used to launch the asynchronous operation. auto op = async_write_messages(socket, "Testing deferred\r\n", 5, asio::deferred); // Launch the operation using a lambda as a callback. std::move(op)( [](const std::error_code& error) { if (!error) { std::cout << "Messages sent\n"; } else { std::cout << "Error: " << error.message() << "\n"; } }); io_context.run(); } //------------------------------------------------------------------------------ void test_future() { asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using the use_future completion token. // This token causes the operation's initiating function to return a future, // which may be used to synchronously wait for the result of the operation. std::future f = async_write_messages( socket, "Testing future\r\n", 5, asio::use_future); io_context.run(); try { // Get the result of the operation. f.get(); std::cout << "Messages sent\n"; } catch (const std::exception& e) { std::cout << "Error: " << e.what() << "\n"; } } //------------------------------------------------------------------------------ int main() { test_callback(); test_deferred(); test_future(); }