// // composed_2.cpp // ~~~~~~~~~~~~~~ // // Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #include #include #include #include #include #include #include #include #include #include using asio::ip::tcp; // NOTE: This example requires the new asio::async_initiate function. For // an example that works with the Networking TS style of completion tokens, // please see an older version of asio. //------------------------------------------------------------------------------ // This next simplest example of a composed asynchronous operation involves // repackaging multiple operations but choosing to invoke just one of them. All // of these underlying operations have the same completion signature. The // asynchronous operation requirements are met by delegating responsibility to // the underlying operations. // In addition to determining the mechanism by which an asynchronous operation // delivers its result, a completion token also determines the time when the // operation commences. For example, when the completion token is a simple // callback the operation commences before the initiating function returns. // However, if the completion token's delivery mechanism uses a future, we // might instead want to defer initiation of the operation until the returned // future object is waited upon. // // To enable this, when implementing an asynchronous operation we must package // the initiation step as a function object. struct async_write_message_initiation { // The initiation function object's call operator is passed the concrete // completion handler produced by the completion token. This completion // handler matches the asynchronous operation's completion handler signature, // which in this example is: // // void(std::error_code error, std::size_t) // // The initiation function object also receives any additional arguments // required to start the operation. (Note: We could have instead passed these // arguments as members in the initiaton function object. However, we should // prefer to propagate them as function call arguments as this allows the // completion token to optimise how they are passed. For example, a lazy // future which defers initiation would need to make a decay-copy of the // arguments, but when using a simple callback the arguments can be trivially // forwarded straight through.) template void operator()(CompletionHandler&& completion_handler, tcp::socket& socket, const char* message, bool allow_partial_write) const { if (allow_partial_write) { // When delegating to an underlying operation we must take care to // perfectly forward the completion handler. This ensures that our // operation works correctly with move-only function objects as // callbacks. return socket.async_write_some( asio::buffer(message, std::strlen(message)), std::forward(completion_handler)); } else { // As above, we must perfectly forward the completion handler when calling // the alternate underlying operation. return asio::async_write(socket, asio::buffer(message, std::strlen(message)), std::forward(completion_handler)); } } }; template auto async_write_message(tcp::socket& socket, const char* message, bool allow_partial_write, CompletionToken&& token) // The return type of the initiating function is deduced from the combination // of: // // - the CompletionToken type, // - the completion handler signature, and // - the asynchronous operation's initiation function object. // // When the completion token is a simple callback, the return type is void. // However, when the completion token is asio::yield_context (used for // stackful coroutines) the return type would be std::size_t, and when the // completion token is asio::use_future it would be std::future. // When the completion token is asio::deferred, the return type differs for // each asynchronous operation. // // In C++11 we deduce the type from the call to asio::async_initiate. -> decltype( asio::async_initiate< CompletionToken, void(std::error_code, std::size_t)>( async_write_message_initiation(), token, std::ref(socket), message, allow_partial_write)) { // The asio::async_initiate function takes: // // - our initiation function object, // - the completion token, // - the completion handler signature, and // - any additional arguments we need to initiate the operation. // // It then asks the completion token to create a completion handler (i.e. a // callback) with the specified signature, and invoke the initiation function // object with this completion handler as well as the additional arguments. // The return value of async_initiate is the result of our operation's // initiating function. // // Note that we wrap non-const reference arguments in std::reference_wrapper // to prevent incorrect decay-copies of these objects. return asio::async_initiate< CompletionToken, void(std::error_code, std::size_t)>( async_write_message_initiation(), token, std::ref(socket), message, allow_partial_write); } //------------------------------------------------------------------------------ void test_callback() { asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using a lambda as a callback. async_write_message(socket, "Testing callback\r\n", false, [](const std::error_code& error, std::size_t n) { if (!error) { std::cout << n << " bytes transferred\n"; } else { std::cout << "Error: " << error.message() << "\n"; } }); io_context.run(); } //------------------------------------------------------------------------------ void test_deferred() { asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using the deferred completion token. This // token causes the operation's initiating function to package up the // operation and its arguments to return a function object, which may then be // used to launch the asynchronous operation. auto op = async_write_message(socket, "Testing deferred\r\n", false, asio::deferred); // Launch the operation using a lambda as a callback. std::move(op)( [](const std::error_code& error, std::size_t n) { if (!error) { std::cout << n << " bytes transferred\n"; } else { std::cout << "Error: " << error.message() << "\n"; } }); io_context.run(); } //------------------------------------------------------------------------------ void test_future() { asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using the use_future completion token. // This token causes the operation's initiating function to return a future, // which may be used to synchronously wait for the result of the operation. std::future f = async_write_message( socket, "Testing future\r\n", false, asio::use_future); io_context.run(); try { // Get the result of the operation. std::size_t n = f.get(); std::cout << n << " bytes transferred\n"; } catch (const std::exception& e) { std::cout << "Error: " << e.what() << "\n"; } } //------------------------------------------------------------------------------ int main() { test_callback(); test_deferred(); test_future(); }