// // composed_4.cpp // ~~~~~~~~~~~~~~ // // Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #include #include #include #include #include #include #include #include #include #include #include #include using asio::ip::tcp; // NOTE: This example requires the new asio::async_initiate function. For // an example that works with the Networking TS style of completion tokens, // please see an older version of asio. //------------------------------------------------------------------------------ // In this composed operation we repackage an existing operation, but with a // different completion handler signature. We will also intercept an empty // message as an invalid argument, and propagate the corresponding error to the // user. The asynchronous operation requirements are met by delegating // responsibility to the underlying operation. // In addition to determining the mechanism by which an asynchronous operation // delivers its result, a completion token also determines the time when the // operation commences. For example, when the completion token is a simple // callback the operation commences before the initiating function returns. // However, if the completion token's delivery mechanism uses a future, we // might instead want to defer initiation of the operation until the returned // future object is waited upon. // // To enable this, when implementing an asynchronous operation we must package // the initiation step as a function object. struct async_write_message_initiation { // The initiation function object's call operator is passed the concrete // completion handler produced by the completion token. This completion // handler matches the asynchronous operation's completion handler signature, // which in this example is: // // void(std::error_code error) // // The initiation function object also receives any additional arguments // required to start the operation. (Note: We could have instead passed these // arguments as members in the initiaton function object. However, we should // prefer to propagate them as function call arguments as this allows the // completion token to optimise how they are passed. For example, a lazy // future which defers initiation would need to make a decay-copy of the // arguments, but when using a simple callback the arguments can be trivially // forwarded straight through.) template void operator()(CompletionHandler&& completion_handler, tcp::socket& socket, const char* message) const { // The post operation has a completion handler signature of: // // void() // // and the async_write operation has a completion handler signature of: // // void(std::error_code error, std::size n) // // Both of these operations' completion handler signatures differ from our // operation's completion handler signature. We will adapt our completion // handler to these signatures by using std::bind, which drops the // additional arguments. // // However, it is essential to the correctness of our composed operation // that we preserve the executor of the user-supplied completion handler. // The std::bind function will not do this for us, so we must do this by // first obtaining the completion handler's associated executor (defaulting // to the I/O executor - in this case the executor of the socket - if the // completion handler does not have its own) ... auto executor = asio::get_associated_executor( completion_handler, socket.get_executor()); // ... and then binding this executor to our adapted completion handler // using the asio::bind_executor function. std::size_t length = std::strlen(message); if (length == 0) { asio::post( asio::bind_executor(executor, std::bind(std::forward(completion_handler), asio::error::invalid_argument))); } else { asio::async_write(socket, asio::buffer(message, length), asio::bind_executor(executor, std::bind(std::forward(completion_handler), std::placeholders::_1))); } } }; template auto async_write_message(tcp::socket& socket, const char* message, CompletionToken&& token) // The return type of the initiating function is deduced from the combination // of: // // - the CompletionToken type, // - the completion handler signature, and // - the asynchronous operation's initiation function object. // // When the completion token is a simple callback, the return type is always // void. In this example, when the completion token is asio::yield_context // (used for stackful coroutines) the return type would also be void, as // there is no non-error argument to the completion handler. When the // completion token is asio::use_future it would be std::future. When // the completion token is asio::deferred, the return type differs for each // asynchronous operation. // // In C++11 we deduce the type from the call to asio::async_initiate. -> decltype( asio::async_initiate< CompletionToken, void(std::error_code)>( async_write_message_initiation(), token, std::ref(socket), message)) { // The asio::async_initiate function takes: // // - our initiation function object, // - the completion token, // - the completion handler signature, and // - any additional arguments we need to initiate the operation. // // It then asks the completion token to create a completion handler (i.e. a // callback) with the specified signature, and invoke the initiation function // object with this completion handler as well as the additional arguments. // The return value of async_initiate is the result of our operation's // initiating function. // // Note that we wrap non-const reference arguments in std::reference_wrapper // to prevent incorrect decay-copies of these objects. return asio::async_initiate< CompletionToken, void(std::error_code)>( async_write_message_initiation(), token, std::ref(socket), message); } //------------------------------------------------------------------------------ void test_callback() { asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using a lambda as a callback. async_write_message(socket, "", [](const std::error_code& error) { if (!error) { std::cout << "Message sent\n"; } else { std::cout << "Error: " << error.message() << "\n"; } }); io_context.run(); } //------------------------------------------------------------------------------ void test_deferred() { asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using the deferred completion token. This // token causes the operation's initiating function to package up the // operation and its arguments to return a function object, which may then be // used to launch the asynchronous operation. auto op = async_write_message(socket, "", asio::deferred); // Launch the operation using a lambda as a callback. std::move(op)( [](const std::error_code& error) { if (!error) { std::cout << "Message sent\n"; } else { std::cout << "Error: " << error.message() << "\n"; } }); io_context.run(); } //------------------------------------------------------------------------------ void test_future() { asio::io_context io_context; tcp::acceptor acceptor(io_context, {tcp::v4(), 55555}); tcp::socket socket = acceptor.accept(); // Test our asynchronous operation using the use_future completion token. // This token causes the operation's initiating function to return a future, // which may be used to synchronously wait for the result of the operation. std::future f = async_write_message( socket, "", asio::use_future); io_context.run(); try { // Get the result of the operation. f.get(); std::cout << "Message sent\n"; } catch (const std::exception& e) { std::cout << "Exception: " << e.what() << "\n"; } } //------------------------------------------------------------------------------ int main() { test_callback(); test_deferred(); test_future(); }