Insane_DNS/libraries/asio-1.28.1/include/asio/detail/impl/socket_ops.ipp

3978 lines
108 KiB
C++

//
// detail/impl/socket_ops.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_SOCKET_OPS_IPP
#define ASIO_DETAIL_SOCKET_OPS_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cerrno>
#include <new>
#include "asio/detail/assert.hpp"
#include "asio/detail/socket_ops.hpp"
#include "asio/error.hpp"
#if defined(ASIO_WINDOWS_RUNTIME)
# include <codecvt>
# include <locale>
# include <string>
#endif // defined(ASIO_WINDOWS_RUNTIME)
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__) \
|| defined(__MACH__) && defined(__APPLE__)
# if defined(ASIO_HAS_PTHREADS)
# include <pthread.h>
# endif // defined(ASIO_HAS_PTHREADS)
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
// || defined(__MACH__) && defined(__APPLE__)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
namespace socket_ops {
#if !defined(ASIO_WINDOWS_RUNTIME)
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
struct msghdr { int msg_namelen; };
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
#if defined(__hpux)
// HP-UX doesn't declare these functions extern "C", so they are declared again
// here to avoid linker errors about undefined symbols.
extern "C" char* if_indextoname(unsigned int, char*);
extern "C" unsigned int if_nametoindex(const char*);
#endif // defined(__hpux)
#endif // !defined(ASIO_WINDOWS_RUNTIME)
inline void clear_last_error()
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
WSASetLastError(0);
#else
errno = 0;
#endif
}
#if !defined(ASIO_WINDOWS_RUNTIME)
inline void get_last_error(
asio::error_code& ec, bool is_error_condition)
{
if (!is_error_condition)
{
asio::error::clear(ec);
}
else
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
ec = asio::error_code(WSAGetLastError(),
asio::error::get_system_category());
#else
ec = asio::error_code(errno,
asio::error::get_system_category());
#endif
}
}
template <typename SockLenType>
inline socket_type call_accept(SockLenType msghdr::*,
socket_type s, void* addr, std::size_t* addrlen)
{
SockLenType tmp_addrlen = addrlen ? (SockLenType)*addrlen : 0;
socket_type result = ::accept(s,
static_cast<socket_addr_type*>(addr),
addrlen ? &tmp_addrlen : 0);
if (addrlen)
*addrlen = (std::size_t)tmp_addrlen;
return result;
}
socket_type accept(socket_type s, void* addr,
std::size_t* addrlen, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return invalid_socket;
}
socket_type new_s = call_accept(&msghdr::msg_namelen, s, addr, addrlen);
get_last_error(ec, new_s == invalid_socket);
if (new_s == invalid_socket)
return new_s;
#if defined(__MACH__) && defined(__APPLE__) || defined(__FreeBSD__)
int optval = 1;
int result = ::setsockopt(new_s, SOL_SOCKET,
SO_NOSIGPIPE, &optval, sizeof(optval));
get_last_error(ec, result != 0);
if (result != 0)
{
::close(new_s);
return invalid_socket;
}
#endif
asio::error::clear(ec);
return new_s;
}
socket_type sync_accept(socket_type s, state_type state,
void* addr, std::size_t* addrlen, asio::error_code& ec)
{
// Accept a socket.
for (;;)
{
// Try to complete the operation without blocking.
socket_type new_socket = socket_ops::accept(s, addr, addrlen, ec);
// Check if operation succeeded.
if (new_socket != invalid_socket)
return new_socket;
// Operation failed.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
{
if (state & user_set_non_blocking)
return invalid_socket;
// Fall through to retry operation.
}
else if (ec == asio::error::connection_aborted)
{
if (state & enable_connection_aborted)
return invalid_socket;
// Fall through to retry operation.
}
#if defined(EPROTO)
else if (ec.value() == EPROTO)
{
if (state & enable_connection_aborted)
return invalid_socket;
// Fall through to retry operation.
}
#endif // defined(EPROTO)
else
return invalid_socket;
// Wait for socket to become ready.
if (socket_ops::poll_read(s, 0, -1, ec) < 0)
return invalid_socket;
}
}
#if defined(ASIO_HAS_IOCP)
void complete_iocp_accept(socket_type s, void* output_buffer,
DWORD address_length, void* addr, std::size_t* addrlen,
socket_type new_socket, asio::error_code& ec)
{
// Map non-portable errors to their portable counterparts.
if (ec.value() == ERROR_NETNAME_DELETED)
ec = asio::error::connection_aborted;
if (!ec)
{
// Get the address of the peer.
if (addr && addrlen)
{
LPSOCKADDR local_addr = 0;
int local_addr_length = 0;
LPSOCKADDR remote_addr = 0;
int remote_addr_length = 0;
GetAcceptExSockaddrs(output_buffer, 0, address_length,
address_length, &local_addr, &local_addr_length,
&remote_addr, &remote_addr_length);
if (static_cast<std::size_t>(remote_addr_length) > *addrlen)
{
ec = asio::error::invalid_argument;
}
else
{
using namespace std; // For memcpy.
memcpy(addr, remote_addr, remote_addr_length);
*addrlen = static_cast<std::size_t>(remote_addr_length);
}
}
// Need to set the SO_UPDATE_ACCEPT_CONTEXT option so that getsockname
// and getpeername will work on the accepted socket.
SOCKET update_ctx_param = s;
socket_ops::state_type state = 0;
socket_ops::setsockopt(new_socket, state,
SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT,
&update_ctx_param, sizeof(SOCKET), ec);
}
}
#else // defined(ASIO_HAS_IOCP)
bool non_blocking_accept(socket_type s,
state_type state, void* addr, std::size_t* addrlen,
asio::error_code& ec, socket_type& new_socket)
{
for (;;)
{
// Accept the waiting connection.
new_socket = socket_ops::accept(s, addr, addrlen, ec);
// Check if operation succeeded.
if (new_socket != invalid_socket)
return true;
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Operation failed.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
{
// Fall through to retry operation.
}
else if (ec == asio::error::connection_aborted)
{
if (state & enable_connection_aborted)
return true;
// Fall through to retry operation.
}
#if defined(EPROTO)
else if (ec.value() == EPROTO)
{
if (state & enable_connection_aborted)
return true;
// Fall through to retry operation.
}
#endif // defined(EPROTO)
else
return true;
return false;
}
}
#endif // defined(ASIO_HAS_IOCP)
template <typename SockLenType>
inline int call_bind(SockLenType msghdr::*,
socket_type s, const void* addr, std::size_t addrlen)
{
return ::bind(s, static_cast<const socket_addr_type*>(addr),
(SockLenType)addrlen);
}
int bind(socket_type s, const void* addr,
std::size_t addrlen, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
int result = call_bind(&msghdr::msg_namelen, s, addr, addrlen);
get_last_error(ec, result != 0);
return result;
}
int close(socket_type s, state_type& state,
bool destruction, asio::error_code& ec)
{
int result = 0;
if (s != invalid_socket)
{
// We don't want the destructor to block, so set the socket to linger in
// the background. If the user doesn't like this behaviour then they need
// to explicitly close the socket.
if (destruction && (state & user_set_linger))
{
::linger opt;
opt.l_onoff = 0;
opt.l_linger = 0;
asio::error_code ignored_ec;
socket_ops::setsockopt(s, state, SOL_SOCKET,
SO_LINGER, &opt, sizeof(opt), ignored_ec);
}
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
result = ::closesocket(s);
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
result = ::close(s);
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
get_last_error(ec, result != 0);
if (result != 0
&& (ec == asio::error::would_block
|| ec == asio::error::try_again))
{
// According to UNIX Network Programming Vol. 1, it is possible for
// close() to fail with EWOULDBLOCK under certain circumstances. What
// isn't clear is the state of the descriptor after this error. The one
// current OS where this behaviour is seen, Windows, says that the socket
// remains open. Therefore we'll put the descriptor back into blocking
// mode and have another attempt at closing it.
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
ioctl_arg_type arg = 0;
::ioctlsocket(s, FIONBIO, &arg);
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
# if defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
int flags = ::fcntl(s, F_GETFL, 0);
if (flags >= 0)
::fcntl(s, F_SETFL, flags & ~O_NONBLOCK);
# else // defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
ioctl_arg_type arg = 0;
::ioctl(s, FIONBIO, &arg);
# endif // defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
state &= ~non_blocking;
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
result = ::closesocket(s);
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
result = ::close(s);
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
get_last_error(ec, result != 0);
}
}
return result;
}
bool set_user_non_blocking(socket_type s,
state_type& state, bool value, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return false;
}
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
ioctl_arg_type arg = (value ? 1 : 0);
int result = ::ioctlsocket(s, FIONBIO, &arg);
get_last_error(ec, result < 0);
#elif defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
int result = ::fcntl(s, F_GETFL, 0);
get_last_error(ec, result < 0);
if (result >= 0)
{
int flag = (value ? (result | O_NONBLOCK) : (result & ~O_NONBLOCK));
result = ::fcntl(s, F_SETFL, flag);
get_last_error(ec, result < 0);
}
#else
ioctl_arg_type arg = (value ? 1 : 0);
int result = ::ioctl(s, FIONBIO, &arg);
get_last_error(ec, result < 0);
#endif
if (result >= 0)
{
if (value)
state |= user_set_non_blocking;
else
{
// Clearing the user-set non-blocking mode always overrides any
// internally-set non-blocking flag. Any subsequent asynchronous
// operations will need to re-enable non-blocking I/O.
state &= ~(user_set_non_blocking | internal_non_blocking);
}
return true;
}
return false;
}
bool set_internal_non_blocking(socket_type s,
state_type& state, bool value, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return false;
}
if (!value && (state & user_set_non_blocking))
{
// It does not make sense to clear the internal non-blocking flag if the
// user still wants non-blocking behaviour. Return an error and let the
// caller figure out whether to update the user-set non-blocking flag.
ec = asio::error::invalid_argument;
return false;
}
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
ioctl_arg_type arg = (value ? 1 : 0);
int result = ::ioctlsocket(s, FIONBIO, &arg);
get_last_error(ec, result < 0);
#elif defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
int result = ::fcntl(s, F_GETFL, 0);
get_last_error(ec, result < 0);
if (result >= 0)
{
int flag = (value ? (result | O_NONBLOCK) : (result & ~O_NONBLOCK));
result = ::fcntl(s, F_SETFL, flag);
get_last_error(ec, result < 0);
}
#else
ioctl_arg_type arg = (value ? 1 : 0);
int result = ::ioctl(s, FIONBIO, &arg);
get_last_error(ec, result < 0);
#endif
if (result >= 0)
{
if (value)
state |= internal_non_blocking;
else
state &= ~internal_non_blocking;
return true;
}
return false;
}
int shutdown(socket_type s, int what, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
int result = ::shutdown(s, what);
get_last_error(ec, result != 0);
return result;
}
template <typename SockLenType>
inline int call_connect(SockLenType msghdr::*,
socket_type s, const void* addr, std::size_t addrlen)
{
return ::connect(s, static_cast<const socket_addr_type*>(addr),
(SockLenType)addrlen);
}
int connect(socket_type s, const void* addr,
std::size_t addrlen, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
int result = call_connect(&msghdr::msg_namelen, s, addr, addrlen);
get_last_error(ec, result != 0);
#if defined(__linux__)
if (result != 0 && ec == asio::error::try_again)
{
if (static_cast<const socket_addr_type*>(addr)->sa_family == AF_UNIX)
ec = asio::error::in_progress;
else
ec = asio::error::no_buffer_space;
}
#endif // defined(__linux__)
return result;
}
void sync_connect(socket_type s, const void* addr,
std::size_t addrlen, asio::error_code& ec)
{
// Perform the connect operation.
socket_ops::connect(s, addr, addrlen, ec);
if (ec != asio::error::in_progress
&& ec != asio::error::would_block)
{
// The connect operation finished immediately.
return;
}
// Wait for socket to become ready.
if (socket_ops::poll_connect(s, -1, ec) < 0)
return;
// Get the error code from the connect operation.
int connect_error = 0;
size_t connect_error_len = sizeof(connect_error);
if (socket_ops::getsockopt(s, 0, SOL_SOCKET, SO_ERROR,
&connect_error, &connect_error_len, ec) == socket_error_retval)
return;
// Return the result of the connect operation.
ec = asio::error_code(connect_error,
asio::error::get_system_category());
}
#if defined(ASIO_HAS_IOCP)
void complete_iocp_connect(socket_type s, asio::error_code& ec)
{
// Map non-portable errors to their portable counterparts.
switch (ec.value())
{
case ERROR_CONNECTION_REFUSED:
ec = asio::error::connection_refused;
break;
case ERROR_NETWORK_UNREACHABLE:
ec = asio::error::network_unreachable;
break;
case ERROR_HOST_UNREACHABLE:
ec = asio::error::host_unreachable;
break;
case ERROR_SEM_TIMEOUT:
ec = asio::error::timed_out;
break;
default:
break;
}
if (!ec)
{
// Need to set the SO_UPDATE_CONNECT_CONTEXT option so that getsockname
// and getpeername will work on the connected socket.
socket_ops::state_type state = 0;
const int so_update_connect_context = 0x7010;
socket_ops::setsockopt(s, state, SOL_SOCKET,
so_update_connect_context, 0, 0, ec);
}
}
#endif // defined(ASIO_HAS_IOCP)
bool non_blocking_connect(socket_type s, asio::error_code& ec)
{
// Check if the connect operation has finished. This is required since we may
// get spurious readiness notifications from the reactor.
#if defined(ASIO_WINDOWS) \
|| defined(__CYGWIN__) \
|| defined(__SYMBIAN32__)
fd_set write_fds;
FD_ZERO(&write_fds);
FD_SET(s, &write_fds);
fd_set except_fds;
FD_ZERO(&except_fds);
FD_SET(s, &except_fds);
timeval zero_timeout;
zero_timeout.tv_sec = 0;
zero_timeout.tv_usec = 0;
int ready = ::select(s + 1, 0, &write_fds, &except_fds, &zero_timeout);
#else // defined(ASIO_WINDOWS)
// || defined(__CYGWIN__)
// || defined(__SYMBIAN32__)
pollfd fds;
fds.fd = s;
fds.events = POLLOUT;
fds.revents = 0;
int ready = ::poll(&fds, 1, 0);
#endif // defined(ASIO_WINDOWS)
// || defined(__CYGWIN__)
// || defined(__SYMBIAN32__)
if (ready == 0)
{
// The asynchronous connect operation is still in progress.
return false;
}
// Get the error code from the connect operation.
int connect_error = 0;
size_t connect_error_len = sizeof(connect_error);
if (socket_ops::getsockopt(s, 0, SOL_SOCKET, SO_ERROR,
&connect_error, &connect_error_len, ec) == 0)
{
if (connect_error)
{
ec = asio::error_code(connect_error,
asio::error::get_system_category());
}
else
asio::error::clear(ec);
}
return true;
}
int socketpair(int af, int type, int protocol,
socket_type sv[2], asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
(void)(af);
(void)(type);
(void)(protocol);
(void)(sv);
ec = asio::error::operation_not_supported;
return socket_error_retval;
#else
int result = ::socketpair(af, type, protocol, sv);
get_last_error(ec, result != 0);
return result;
#endif
}
bool sockatmark(socket_type s, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return false;
}
#if defined(SIOCATMARK)
ioctl_arg_type value = 0;
# if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
int result = ::ioctlsocket(s, SIOCATMARK, &value);
# else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
int result = ::ioctl(s, SIOCATMARK, &value);
# endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
get_last_error(ec, result < 0);
# if defined(ENOTTY)
if (ec.value() == ENOTTY)
ec = asio::error::not_socket;
# endif // defined(ENOTTY)
#else // defined(SIOCATMARK)
int value = ::sockatmark(s);
get_last_error(ec, value < 0);
#endif // defined(SIOCATMARK)
return ec ? false : value != 0;
}
size_t available(socket_type s, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return 0;
}
ioctl_arg_type value = 0;
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
int result = ::ioctlsocket(s, FIONREAD, &value);
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
int result = ::ioctl(s, FIONREAD, &value);
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
get_last_error(ec, result < 0);
#if defined(ENOTTY)
if (ec.value() == ENOTTY)
ec = asio::error::not_socket;
#endif // defined(ENOTTY)
return ec ? static_cast<size_t>(0) : static_cast<size_t>(value);
}
int listen(socket_type s, int backlog, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
int result = ::listen(s, backlog);
get_last_error(ec, result != 0);
return result;
}
inline void init_buf_iov_base(void*& base, void* addr)
{
base = addr;
}
template <typename T>
inline void init_buf_iov_base(T& base, void* addr)
{
base = static_cast<T>(addr);
}
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
typedef WSABUF buf;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
typedef iovec buf;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
void init_buf(buf& b, void* data, size_t size)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
b.buf = static_cast<char*>(data);
b.len = static_cast<u_long>(size);
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
init_buf_iov_base(b.iov_base, data);
b.iov_len = size;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
void init_buf(buf& b, const void* data, size_t size)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
b.buf = static_cast<char*>(const_cast<void*>(data));
b.len = static_cast<u_long>(size);
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
init_buf_iov_base(b.iov_base, const_cast<void*>(data));
b.iov_len = size;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
inline void init_msghdr_msg_name(void*& name, void* addr)
{
name = static_cast<socket_addr_type*>(addr);
}
inline void init_msghdr_msg_name(void*& name, const socket_addr_type* addr)
{
name = const_cast<socket_addr_type*>(addr);
}
template <typename T>
inline void init_msghdr_msg_name(T& name, void* addr)
{
name = static_cast<T>(addr);
}
template <typename T>
inline void init_msghdr_msg_name(T& name, const void* addr)
{
name = static_cast<T>(const_cast<void*>(addr));
}
signed_size_type recv(socket_type s, buf* bufs, size_t count,
int flags, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
// Receive some data.
DWORD recv_buf_count = static_cast<DWORD>(count);
DWORD bytes_transferred = 0;
DWORD recv_flags = flags;
int result = ::WSARecv(s, bufs, recv_buf_count,
&bytes_transferred, &recv_flags, 0, 0);
get_last_error(ec, true);
if (ec.value() == ERROR_NETNAME_DELETED)
ec = asio::error::connection_reset;
else if (ec.value() == ERROR_PORT_UNREACHABLE)
ec = asio::error::connection_refused;
else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA)
result = 0;
if (result != 0)
return socket_error_retval;
asio::error::clear(ec);
return bytes_transferred;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
msghdr msg = msghdr();
msg.msg_iov = bufs;
msg.msg_iovlen = static_cast<int>(count);
signed_size_type result = ::recvmsg(s, &msg, flags);
get_last_error(ec, result < 0);
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
signed_size_type recv1(socket_type s, void* data, size_t size,
int flags, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
// Receive some data.
WSABUF buf;
buf.buf = const_cast<char*>(static_cast<const char*>(data));
buf.len = static_cast<ULONG>(size);
DWORD bytes_transferred = 0;
DWORD recv_flags = flags;
int result = ::WSARecv(s, &buf, 1,
&bytes_transferred, &recv_flags, 0, 0);
get_last_error(ec, true);
if (ec.value() == ERROR_NETNAME_DELETED)
ec = asio::error::connection_reset;
else if (ec.value() == ERROR_PORT_UNREACHABLE)
ec = asio::error::connection_refused;
else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA)
result = 0;
if (result != 0)
return socket_error_retval;
asio::error::clear(ec);
return bytes_transferred;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
signed_size_type result = ::recv(s, static_cast<char*>(data), size, flags);
get_last_error(ec, result < 0);
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
size_t sync_recv(socket_type s, state_type state, buf* bufs,
size_t count, int flags, bool all_empty, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return 0;
}
// A request to read 0 bytes on a stream is a no-op.
if (all_empty && (state & stream_oriented))
{
asio::error::clear(ec);
return 0;
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = socket_ops::recv(s, bufs, count, flags, ec);
// Check for EOF.
if ((state & stream_oriented) && bytes == 0)
{
ec = asio::error::eof;
return 0;
}
// Check if operation succeeded.
if (bytes >= 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_read(s, 0, -1, ec) < 0)
return 0;
}
}
size_t sync_recv1(socket_type s, state_type state, void* data,
size_t size, int flags, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return 0;
}
// A request to read 0 bytes on a stream is a no-op.
if (size == 0 && (state & stream_oriented))
{
asio::error::clear(ec);
return 0;
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = socket_ops::recv1(s, data, size, flags, ec);
// Check for EOF.
if ((state & stream_oriented) && bytes == 0)
{
ec = asio::error::eof;
return 0;
}
// Check if operation succeeded.
if (bytes >= 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_read(s, 0, -1, ec) < 0)
return 0;
}
}
#if defined(ASIO_HAS_IOCP)
void complete_iocp_recv(state_type state,
const weak_cancel_token_type& cancel_token, bool all_empty,
asio::error_code& ec, size_t bytes_transferred)
{
// Map non-portable errors to their portable counterparts.
if (ec.value() == ERROR_NETNAME_DELETED)
{
if (cancel_token.expired())
ec = asio::error::operation_aborted;
else
ec = asio::error::connection_reset;
}
else if (ec.value() == ERROR_PORT_UNREACHABLE)
{
ec = asio::error::connection_refused;
}
else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA)
{
asio::error::clear(ec);
}
// Check for connection closed.
else if (!ec && bytes_transferred == 0
&& (state & stream_oriented) != 0
&& !all_empty)
{
ec = asio::error::eof;
}
}
#else // defined(ASIO_HAS_IOCP)
bool non_blocking_recv(socket_type s,
buf* bufs, size_t count, int flags, bool is_stream,
asio::error_code& ec, size_t& bytes_transferred)
{
for (;;)
{
// Read some data.
signed_size_type bytes = socket_ops::recv(s, bufs, count, flags, ec);
// Check for end of stream.
if (is_stream && bytes == 0)
{
ec = asio::error::eof;
return true;
}
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
bool non_blocking_recv1(socket_type s,
void* data, size_t size, int flags, bool is_stream,
asio::error_code& ec, size_t& bytes_transferred)
{
for (;;)
{
// Read some data.
signed_size_type bytes = socket_ops::recv1(s, data, size, flags, ec);
// Check for end of stream.
if (is_stream && bytes == 0)
{
ec = asio::error::eof;
return true;
}
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
#endif // defined(ASIO_HAS_IOCP)
signed_size_type recvfrom(socket_type s, buf* bufs, size_t count,
int flags, void* addr, std::size_t* addrlen, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
// Receive some data.
DWORD recv_buf_count = static_cast<DWORD>(count);
DWORD bytes_transferred = 0;
DWORD recv_flags = flags;
int tmp_addrlen = (int)*addrlen;
int result = ::WSARecvFrom(s, bufs, recv_buf_count, &bytes_transferred,
&recv_flags, static_cast<socket_addr_type*>(addr), &tmp_addrlen, 0, 0);
get_last_error(ec, true);
*addrlen = (std::size_t)tmp_addrlen;
if (ec.value() == ERROR_NETNAME_DELETED)
ec = asio::error::connection_reset;
else if (ec.value() == ERROR_PORT_UNREACHABLE)
ec = asio::error::connection_refused;
else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA)
result = 0;
if (result != 0)
return socket_error_retval;
asio::error::clear(ec);
return bytes_transferred;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
msghdr msg = msghdr();
init_msghdr_msg_name(msg.msg_name, addr);
msg.msg_namelen = static_cast<int>(*addrlen);
msg.msg_iov = bufs;
msg.msg_iovlen = static_cast<int>(count);
signed_size_type result = ::recvmsg(s, &msg, flags);
get_last_error(ec, result < 0);
*addrlen = msg.msg_namelen;
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
template <typename SockLenType>
inline signed_size_type call_recvfrom(SockLenType msghdr::*, socket_type s,
void* data, size_t size, int flags, void* addr, std::size_t* addrlen)
{
SockLenType tmp_addrlen = addrlen ? (SockLenType)*addrlen : 0;
signed_size_type result = ::recvfrom(s, static_cast<char*>(data), size,
flags, static_cast<socket_addr_type*>(addr), addrlen ? &tmp_addrlen : 0);
if (addrlen)
*addrlen = (std::size_t)tmp_addrlen;
return result;
}
signed_size_type recvfrom1(socket_type s, void* data, size_t size,
int flags, void* addr, std::size_t* addrlen, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
// Receive some data.
WSABUF buf;
buf.buf = static_cast<char*>(data);
buf.len = static_cast<ULONG>(size);
DWORD bytes_transferred = 0;
DWORD recv_flags = flags;
int tmp_addrlen = (int)*addrlen;
int result = ::WSARecvFrom(s, &buf, 1, &bytes_transferred, &recv_flags,
static_cast<socket_addr_type*>(addr), &tmp_addrlen, 0, 0);
get_last_error(ec, true);
*addrlen = (std::size_t)tmp_addrlen;
if (ec.value() == ERROR_NETNAME_DELETED)
ec = asio::error::connection_reset;
else if (ec.value() == ERROR_PORT_UNREACHABLE)
ec = asio::error::connection_refused;
else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA)
result = 0;
if (result != 0)
return socket_error_retval;
asio::error::clear(ec);
return bytes_transferred;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
signed_size_type result = call_recvfrom(&msghdr::msg_namelen,
s, data, size, flags, addr, addrlen);
get_last_error(ec, result < 0);
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
size_t sync_recvfrom(socket_type s, state_type state, buf* bufs, size_t count,
int flags, void* addr, std::size_t* addrlen, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return 0;
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = socket_ops::recvfrom(
s, bufs, count, flags, addr, addrlen, ec);
// Check if operation succeeded.
if (bytes >= 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_read(s, 0, -1, ec) < 0)
return 0;
}
}
size_t sync_recvfrom1(socket_type s, state_type state, void* data, size_t size,
int flags, void* addr, std::size_t* addrlen, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return 0;
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = socket_ops::recvfrom1(
s, data, size, flags, addr, addrlen, ec);
// Check if operation succeeded.
if (bytes >= 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_read(s, 0, -1, ec) < 0)
return 0;
}
}
#if defined(ASIO_HAS_IOCP)
void complete_iocp_recvfrom(
const weak_cancel_token_type& cancel_token,
asio::error_code& ec)
{
// Map non-portable errors to their portable counterparts.
if (ec.value() == ERROR_NETNAME_DELETED)
{
if (cancel_token.expired())
ec = asio::error::operation_aborted;
else
ec = asio::error::connection_reset;
}
else if (ec.value() == ERROR_PORT_UNREACHABLE)
{
ec = asio::error::connection_refused;
}
else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA)
{
asio::error::clear(ec);
}
}
#else // defined(ASIO_HAS_IOCP)
bool non_blocking_recvfrom(socket_type s, buf* bufs,
size_t count, int flags, void* addr, std::size_t* addrlen,
asio::error_code& ec, size_t& bytes_transferred)
{
for (;;)
{
// Read some data.
signed_size_type bytes = socket_ops::recvfrom(
s, bufs, count, flags, addr, addrlen, ec);
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
bool non_blocking_recvfrom1(socket_type s, void* data,
size_t size, int flags, void* addr, std::size_t* addrlen,
asio::error_code& ec, size_t& bytes_transferred)
{
for (;;)
{
// Read some data.
signed_size_type bytes = socket_ops::recvfrom1(
s, data, size, flags, addr, addrlen, ec);
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
#endif // defined(ASIO_HAS_IOCP)
signed_size_type recvmsg(socket_type s, buf* bufs, size_t count,
int in_flags, int& out_flags, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
out_flags = 0;
return socket_ops::recv(s, bufs, count, in_flags, ec);
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
msghdr msg = msghdr();
msg.msg_iov = bufs;
msg.msg_iovlen = static_cast<int>(count);
signed_size_type result = ::recvmsg(s, &msg, in_flags);
get_last_error(ec, result < 0);
if (result >= 0)
out_flags = msg.msg_flags;
else
out_flags = 0;
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
size_t sync_recvmsg(socket_type s, state_type state,
buf* bufs, size_t count, int in_flags, int& out_flags,
asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return 0;
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = socket_ops::recvmsg(
s, bufs, count, in_flags, out_flags, ec);
// Check if operation succeeded.
if (bytes >= 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_read(s, 0, -1, ec) < 0)
return 0;
}
}
#if defined(ASIO_HAS_IOCP)
void complete_iocp_recvmsg(
const weak_cancel_token_type& cancel_token,
asio::error_code& ec)
{
// Map non-portable errors to their portable counterparts.
if (ec.value() == ERROR_NETNAME_DELETED)
{
if (cancel_token.expired())
ec = asio::error::operation_aborted;
else
ec = asio::error::connection_reset;
}
else if (ec.value() == ERROR_PORT_UNREACHABLE)
{
ec = asio::error::connection_refused;
}
else if (ec.value() == WSAEMSGSIZE || ec.value() == ERROR_MORE_DATA)
{
asio::error::clear(ec);
}
}
#else // defined(ASIO_HAS_IOCP)
bool non_blocking_recvmsg(socket_type s,
buf* bufs, size_t count, int in_flags, int& out_flags,
asio::error_code& ec, size_t& bytes_transferred)
{
for (;;)
{
// Read some data.
signed_size_type bytes = socket_ops::recvmsg(
s, bufs, count, in_flags, out_flags, ec);
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
#endif // defined(ASIO_HAS_IOCP)
signed_size_type send(socket_type s, const buf* bufs, size_t count,
int flags, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
// Send the data.
DWORD send_buf_count = static_cast<DWORD>(count);
DWORD bytes_transferred = 0;
DWORD send_flags = flags;
int result = ::WSASend(s, const_cast<buf*>(bufs),
send_buf_count, &bytes_transferred, send_flags, 0, 0);
get_last_error(ec, true);
if (ec.value() == ERROR_NETNAME_DELETED)
ec = asio::error::connection_reset;
else if (ec.value() == ERROR_PORT_UNREACHABLE)
ec = asio::error::connection_refused;
if (result != 0)
return socket_error_retval;
asio::error::clear(ec);
return bytes_transferred;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
msghdr msg = msghdr();
msg.msg_iov = const_cast<buf*>(bufs);
msg.msg_iovlen = static_cast<int>(count);
#if defined(ASIO_HAS_MSG_NOSIGNAL)
flags |= MSG_NOSIGNAL;
#endif // defined(ASIO_HAS_MSG_NOSIGNAL)
signed_size_type result = ::sendmsg(s, &msg, flags);
get_last_error(ec, result < 0);
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
signed_size_type send1(socket_type s, const void* data, size_t size,
int flags, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
// Send the data.
WSABUF buf;
buf.buf = const_cast<char*>(static_cast<const char*>(data));
buf.len = static_cast<ULONG>(size);
DWORD bytes_transferred = 0;
DWORD send_flags = flags;
int result = ::WSASend(s, &buf, 1,
&bytes_transferred, send_flags, 0, 0);
get_last_error(ec, true);
if (ec.value() == ERROR_NETNAME_DELETED)
ec = asio::error::connection_reset;
else if (ec.value() == ERROR_PORT_UNREACHABLE)
ec = asio::error::connection_refused;
if (result != 0)
return socket_error_retval;
asio::error::clear(ec);
return bytes_transferred;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
#if defined(ASIO_HAS_MSG_NOSIGNAL)
flags |= MSG_NOSIGNAL;
#endif // defined(ASIO_HAS_MSG_NOSIGNAL)
signed_size_type result = ::send(s,
static_cast<const char*>(data), size, flags);
get_last_error(ec, result < 0);
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
size_t sync_send(socket_type s, state_type state, const buf* bufs,
size_t count, int flags, bool all_empty, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return 0;
}
// A request to write 0 bytes to a stream is a no-op.
if (all_empty && (state & stream_oriented))
{
asio::error::clear(ec);
return 0;
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = socket_ops::send(s, bufs, count, flags, ec);
// Check if operation succeeded.
if (bytes >= 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_write(s, 0, -1, ec) < 0)
return 0;
}
}
size_t sync_send1(socket_type s, state_type state, const void* data,
size_t size, int flags, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return 0;
}
// A request to write 0 bytes to a stream is a no-op.
if (size == 0 && (state & stream_oriented))
{
asio::error::clear(ec);
return 0;
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = socket_ops::send1(s, data, size, flags, ec);
// Check if operation succeeded.
if (bytes >= 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_write(s, 0, -1, ec) < 0)
return 0;
}
}
#if defined(ASIO_HAS_IOCP)
void complete_iocp_send(
const weak_cancel_token_type& cancel_token,
asio::error_code& ec)
{
// Map non-portable errors to their portable counterparts.
if (ec.value() == ERROR_NETNAME_DELETED)
{
if (cancel_token.expired())
ec = asio::error::operation_aborted;
else
ec = asio::error::connection_reset;
}
else if (ec.value() == ERROR_PORT_UNREACHABLE)
{
ec = asio::error::connection_refused;
}
}
#else // defined(ASIO_HAS_IOCP)
bool non_blocking_send(socket_type s,
const buf* bufs, size_t count, int flags,
asio::error_code& ec, size_t& bytes_transferred)
{
for (;;)
{
// Write some data.
signed_size_type bytes = socket_ops::send(s, bufs, count, flags, ec);
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
bool non_blocking_send1(socket_type s,
const void* data, size_t size, int flags,
asio::error_code& ec, size_t& bytes_transferred)
{
for (;;)
{
// Write some data.
signed_size_type bytes = socket_ops::send1(s, data, size, flags, ec);
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
#endif // defined(ASIO_HAS_IOCP)
signed_size_type sendto(socket_type s, const buf* bufs,
size_t count, int flags, const void* addr,
std::size_t addrlen, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
// Send the data.
DWORD send_buf_count = static_cast<DWORD>(count);
DWORD bytes_transferred = 0;
int result = ::WSASendTo(s, const_cast<buf*>(bufs),
send_buf_count, &bytes_transferred, flags,
static_cast<const socket_addr_type*>(addr),
static_cast<int>(addrlen), 0, 0);
get_last_error(ec, true);
if (ec.value() == ERROR_NETNAME_DELETED)
ec = asio::error::connection_reset;
else if (ec.value() == ERROR_PORT_UNREACHABLE)
ec = asio::error::connection_refused;
if (result != 0)
return socket_error_retval;
asio::error::clear(ec);
return bytes_transferred;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
msghdr msg = msghdr();
init_msghdr_msg_name(msg.msg_name, addr);
msg.msg_namelen = static_cast<int>(addrlen);
msg.msg_iov = const_cast<buf*>(bufs);
msg.msg_iovlen = static_cast<int>(count);
#if defined(ASIO_HAS_MSG_NOSIGNAL)
flags |= MSG_NOSIGNAL;
#endif // defined(ASIO_HAS_MSG_NOSIGNAL)
signed_size_type result = ::sendmsg(s, &msg, flags);
get_last_error(ec, result < 0);
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
template <typename SockLenType>
inline signed_size_type call_sendto(SockLenType msghdr::*,
socket_type s, const void* data, size_t size, int flags,
const void* addr, std::size_t addrlen)
{
return ::sendto(s, static_cast<char*>(const_cast<void*>(data)), size, flags,
static_cast<const socket_addr_type*>(addr), (SockLenType)addrlen);
}
signed_size_type sendto1(socket_type s, const void* data,
size_t size, int flags, const void* addr,
std::size_t addrlen, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
// Send the data.
WSABUF buf;
buf.buf = const_cast<char*>(static_cast<const char*>(data));
buf.len = static_cast<ULONG>(size);
DWORD bytes_transferred = 0;
int result = ::WSASendTo(s, &buf, 1, &bytes_transferred, flags,
static_cast<const socket_addr_type*>(addr),
static_cast<int>(addrlen), 0, 0);
get_last_error(ec, true);
if (ec.value() == ERROR_NETNAME_DELETED)
ec = asio::error::connection_reset;
else if (ec.value() == ERROR_PORT_UNREACHABLE)
ec = asio::error::connection_refused;
if (result != 0)
return socket_error_retval;
asio::error::clear(ec);
return bytes_transferred;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
#if defined(ASIO_HAS_MSG_NOSIGNAL)
flags |= MSG_NOSIGNAL;
#endif // defined(ASIO_HAS_MSG_NOSIGNAL)
signed_size_type result = call_sendto(&msghdr::msg_namelen,
s, data, size, flags, addr, addrlen);
get_last_error(ec, result < 0);
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
size_t sync_sendto(socket_type s, state_type state,
const buf* bufs, size_t count, int flags, const void* addr,
std::size_t addrlen, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return 0;
}
// Write some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = socket_ops::sendto(
s, bufs, count, flags, addr, addrlen, ec);
// Check if operation succeeded.
if (bytes >= 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_write(s, 0, -1, ec) < 0)
return 0;
}
}
size_t sync_sendto1(socket_type s, state_type state,
const void* data, size_t size, int flags, const void* addr,
std::size_t addrlen, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return 0;
}
// Write some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = socket_ops::sendto1(
s, data, size, flags, addr, addrlen, ec);
// Check if operation succeeded.
if (bytes >= 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_write(s, 0, -1, ec) < 0)
return 0;
}
}
#if !defined(ASIO_HAS_IOCP)
bool non_blocking_sendto(socket_type s,
const buf* bufs, size_t count, int flags,
const void* addr, std::size_t addrlen,
asio::error_code& ec, size_t& bytes_transferred)
{
for (;;)
{
// Write some data.
signed_size_type bytes = socket_ops::sendto(
s, bufs, count, flags, addr, addrlen, ec);
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
bool non_blocking_sendto1(socket_type s,
const void* data, size_t size, int flags,
const void* addr, std::size_t addrlen,
asio::error_code& ec, size_t& bytes_transferred)
{
for (;;)
{
// Write some data.
signed_size_type bytes = socket_ops::sendto1(
s, data, size, flags, addr, addrlen, ec);
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
#endif // !defined(ASIO_HAS_IOCP)
socket_type socket(int af, int type, int protocol,
asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
socket_type s = ::WSASocketW(af, type, protocol, 0, 0, WSA_FLAG_OVERLAPPED);
get_last_error(ec, s == invalid_socket);
if (s == invalid_socket)
return s;
if (af == ASIO_OS_DEF(AF_INET6))
{
// Try to enable the POSIX default behaviour of having IPV6_V6ONLY set to
// false. This will only succeed on Windows Vista and later versions of
// Windows, where a dual-stack IPv4/v6 implementation is available.
DWORD optval = 0;
::setsockopt(s, IPPROTO_IPV6, IPV6_V6ONLY,
reinterpret_cast<const char*>(&optval), sizeof(optval));
}
return s;
#elif defined(__MACH__) && defined(__APPLE__) || defined(__FreeBSD__)
socket_type s = ::socket(af, type, protocol);
get_last_error(ec, s == invalid_socket);
if (s == invalid_socket)
return s;
int optval = 1;
int result = ::setsockopt(s, SOL_SOCKET,
SO_NOSIGPIPE, &optval, sizeof(optval));
get_last_error(ec, result != 0);
if (result != 0)
{
::close(s);
return invalid_socket;
}
return s;
#else
int s = ::socket(af, type, protocol);
get_last_error(ec, s < 0);
return s;
#endif
}
template <typename SockLenType>
inline int call_setsockopt(SockLenType msghdr::*,
socket_type s, int level, int optname,
const void* optval, std::size_t optlen)
{
return ::setsockopt(s, level, optname,
(const char*)optval, (SockLenType)optlen);
}
int setsockopt(socket_type s, state_type& state, int level, int optname,
const void* optval, std::size_t optlen, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
if (level == custom_socket_option_level && optname == always_fail_option)
{
ec = asio::error::invalid_argument;
return socket_error_retval;
}
if (level == custom_socket_option_level
&& optname == enable_connection_aborted_option)
{
if (optlen != sizeof(int))
{
ec = asio::error::invalid_argument;
return socket_error_retval;
}
if (*static_cast<const int*>(optval))
state |= enable_connection_aborted;
else
state &= ~enable_connection_aborted;
asio::error::clear(ec);
return 0;
}
if (level == SOL_SOCKET && optname == SO_LINGER)
state |= user_set_linger;
#if defined(__BORLANDC__)
// Mysteriously, using the getsockopt and setsockopt functions directly with
// Borland C++ results in incorrect values being set and read. The bug can be
// worked around by using function addresses resolved with GetProcAddress.
if (HMODULE winsock_module = ::GetModuleHandleA("ws2_32"))
{
typedef int (WSAAPI *sso_t)(SOCKET, int, int, const char*, int);
if (sso_t sso = (sso_t)::GetProcAddress(winsock_module, "setsockopt"))
{
int result = sso(s, level, optname,
reinterpret_cast<const char*>(optval),
static_cast<int>(optlen));
get_last_error(ec, result != 0);
return result;
}
}
ec = asio::error::fault;
return socket_error_retval;
#else // defined(__BORLANDC__)
int result = call_setsockopt(&msghdr::msg_namelen,
s, level, optname, optval, optlen);
get_last_error(ec, result != 0);
if (result == 0)
{
#if defined(__MACH__) && defined(__APPLE__) \
|| defined(__NetBSD__) || defined(__FreeBSD__) \
|| defined(__OpenBSD__) || defined(__QNX__)
// To implement portable behaviour for SO_REUSEADDR with UDP sockets we
// need to also set SO_REUSEPORT on BSD-based platforms.
if ((state & datagram_oriented)
&& level == SOL_SOCKET && optname == SO_REUSEADDR)
{
call_setsockopt(&msghdr::msg_namelen, s,
SOL_SOCKET, SO_REUSEPORT, optval, optlen);
}
#endif
}
return result;
#endif // defined(__BORLANDC__)
}
template <typename SockLenType>
inline int call_getsockopt(SockLenType msghdr::*,
socket_type s, int level, int optname,
void* optval, std::size_t* optlen)
{
SockLenType tmp_optlen = (SockLenType)*optlen;
int result = ::getsockopt(s, level, optname, (char*)optval, &tmp_optlen);
*optlen = (std::size_t)tmp_optlen;
return result;
}
int getsockopt(socket_type s, state_type state, int level, int optname,
void* optval, size_t* optlen, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
if (level == custom_socket_option_level && optname == always_fail_option)
{
ec = asio::error::invalid_argument;
return socket_error_retval;
}
if (level == custom_socket_option_level
&& optname == enable_connection_aborted_option)
{
if (*optlen != sizeof(int))
{
ec = asio::error::invalid_argument;
return socket_error_retval;
}
*static_cast<int*>(optval) = (state & enable_connection_aborted) ? 1 : 0;
asio::error::clear(ec);
return 0;
}
#if defined(__BORLANDC__)
// Mysteriously, using the getsockopt and setsockopt functions directly with
// Borland C++ results in incorrect values being set and read. The bug can be
// worked around by using function addresses resolved with GetProcAddress.
if (HMODULE winsock_module = ::GetModuleHandleA("ws2_32"))
{
typedef int (WSAAPI *gso_t)(SOCKET, int, int, char*, int*);
if (gso_t gso = (gso_t)::GetProcAddress(winsock_module, "getsockopt"))
{
int tmp_optlen = static_cast<int>(*optlen);
int result = gso(s, level, optname,
reinterpret_cast<char*>(optval), &tmp_optlen);
get_last_error(ec, result != 0);
*optlen = static_cast<size_t>(tmp_optlen);
if (result != 0 && level == IPPROTO_IPV6 && optname == IPV6_V6ONLY
&& ec.value() == WSAENOPROTOOPT && *optlen == sizeof(DWORD))
{
// Dual-stack IPv4/v6 sockets, and the IPV6_V6ONLY socket option, are
// only supported on Windows Vista and later. To simplify program logic
// we will fake success of getting this option and specify that the
// value is non-zero (i.e. true). This corresponds to the behavior of
// IPv6 sockets on Windows platforms pre-Vista.
*static_cast<DWORD*>(optval) = 1;
asio::error::clear(ec);
}
return result;
}
}
ec = asio::error::fault;
return socket_error_retval;
#elif defined(ASIO_WINDOWS) || defined(__CYGWIN__)
int result = call_getsockopt(&msghdr::msg_namelen,
s, level, optname, optval, optlen);
get_last_error(ec, result != 0);
if (result != 0 && level == IPPROTO_IPV6 && optname == IPV6_V6ONLY
&& ec.value() == WSAENOPROTOOPT && *optlen == sizeof(DWORD))
{
// Dual-stack IPv4/v6 sockets, and the IPV6_V6ONLY socket option, are only
// supported on Windows Vista and later. To simplify program logic we will
// fake success of getting this option and specify that the value is
// non-zero (i.e. true). This corresponds to the behavior of IPv6 sockets
// on Windows platforms pre-Vista.
*static_cast<DWORD*>(optval) = 1;
asio::error::clear(ec);
}
return result;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
int result = call_getsockopt(&msghdr::msg_namelen,
s, level, optname, optval, optlen);
get_last_error(ec, result != 0);
#if defined(__linux__)
if (result == 0 && level == SOL_SOCKET && *optlen == sizeof(int)
&& (optname == SO_SNDBUF || optname == SO_RCVBUF))
{
// On Linux, setting SO_SNDBUF or SO_RCVBUF to N actually causes the kernel
// to set the buffer size to N*2. Linux puts additional stuff into the
// buffers so that only about half is actually available to the application.
// The retrieved value is divided by 2 here to make it appear as though the
// correct value has been set.
*static_cast<int*>(optval) /= 2;
}
#endif // defined(__linux__)
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
template <typename SockLenType>
inline int call_getpeername(SockLenType msghdr::*,
socket_type s, void* addr, std::size_t* addrlen)
{
SockLenType tmp_addrlen = (SockLenType)*addrlen;
int result = ::getpeername(s,
static_cast<socket_addr_type*>(addr), &tmp_addrlen);
*addrlen = (std::size_t)tmp_addrlen;
return result;
}
int getpeername(socket_type s, void* addr, std::size_t* addrlen,
bool cached, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
#if defined(ASIO_WINDOWS) && !defined(ASIO_WINDOWS_APP) \
|| defined(__CYGWIN__)
if (cached)
{
// Check if socket is still connected.
DWORD connect_time = 0;
size_t connect_time_len = sizeof(connect_time);
if (socket_ops::getsockopt(s, 0, SOL_SOCKET, SO_CONNECT_TIME,
&connect_time, &connect_time_len, ec) == socket_error_retval)
{
return socket_error_retval;
}
if (connect_time == 0xFFFFFFFF)
{
ec = asio::error::not_connected;
return socket_error_retval;
}
// The cached value is still valid.
asio::error::clear(ec);
return 0;
}
#else // defined(ASIO_WINDOWS) && !defined(ASIO_WINDOWS_APP)
// || defined(__CYGWIN__)
(void)cached;
#endif // defined(ASIO_WINDOWS) && !defined(ASIO_WINDOWS_APP)
// || defined(__CYGWIN__)
int result = call_getpeername(&msghdr::msg_namelen, s, addr, addrlen);
get_last_error(ec, result != 0);
return result;
}
template <typename SockLenType>
inline int call_getsockname(SockLenType msghdr::*,
socket_type s, void* addr, std::size_t* addrlen)
{
SockLenType tmp_addrlen = (SockLenType)*addrlen;
int result = ::getsockname(s,
static_cast<socket_addr_type*>(addr), &tmp_addrlen);
*addrlen = (std::size_t)tmp_addrlen;
return result;
}
int getsockname(socket_type s, void* addr,
std::size_t* addrlen, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
int result = call_getsockname(&msghdr::msg_namelen, s, addr, addrlen);
get_last_error(ec, result != 0);
return result;
}
int ioctl(socket_type s, state_type& state, int cmd,
ioctl_arg_type* arg, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
int result = ::ioctlsocket(s, cmd, arg);
#elif defined(__MACH__) && defined(__APPLE__) \
|| defined(__NetBSD__) || defined(__FreeBSD__) || defined(__OpenBSD__)
int result = ::ioctl(s, static_cast<unsigned int>(cmd), arg);
#else
int result = ::ioctl(s, cmd, arg);
#endif
get_last_error(ec, result < 0);
if (result >= 0)
{
// When updating the non-blocking mode we always perform the ioctl syscall,
// even if the flags would otherwise indicate that the socket is already in
// the correct state. This ensures that the underlying socket is put into
// the state that has been requested by the user. If the ioctl syscall was
// successful then we need to update the flags to match.
if (cmd == static_cast<int>(FIONBIO))
{
if (*arg)
{
state |= user_set_non_blocking;
}
else
{
// Clearing the non-blocking mode always overrides any internally-set
// non-blocking flag. Any subsequent asynchronous operations will need
// to re-enable non-blocking I/O.
state &= ~(user_set_non_blocking | internal_non_blocking);
}
}
}
return result;
}
int select(int nfds, fd_set* readfds, fd_set* writefds,
fd_set* exceptfds, timeval* timeout, asio::error_code& ec)
{
#if defined(__EMSCRIPTEN__)
exceptfds = 0;
#endif // defined(__EMSCRIPTEN__)
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
if (!readfds && !writefds && !exceptfds && timeout)
{
DWORD milliseconds = timeout->tv_sec * 1000 + timeout->tv_usec / 1000;
if (milliseconds == 0)
milliseconds = 1; // Force context switch.
::Sleep(milliseconds);
asio::error::clear(ec);
return 0;
}
// The select() call allows timeout values measured in microseconds, but the
// system clock (as wrapped by boost::posix_time::microsec_clock) typically
// has a resolution of 10 milliseconds. This can lead to a spinning select
// reactor, meaning increased CPU usage, when waiting for the earliest
// scheduled timeout if it's less than 10 milliseconds away. To avoid a tight
// spin we'll use a minimum timeout of 1 millisecond.
if (timeout && timeout->tv_sec == 0
&& timeout->tv_usec > 0 && timeout->tv_usec < 1000)
timeout->tv_usec = 1000;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
#if defined(__hpux) && defined(__SELECT)
timespec ts;
ts.tv_sec = timeout ? timeout->tv_sec : 0;
ts.tv_nsec = timeout ? timeout->tv_usec * 1000 : 0;
int result = ::pselect(nfds, readfds,
writefds, exceptfds, timeout ? &ts : 0, 0);
#else
int result = ::select(nfds, readfds, writefds, exceptfds, timeout);
#endif
get_last_error(ec, result < 0);
return result;
}
int poll_read(socket_type s, state_type state,
int msec, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
#if defined(ASIO_WINDOWS) \
|| defined(__CYGWIN__) \
|| defined(__SYMBIAN32__)
fd_set fds;
FD_ZERO(&fds);
FD_SET(s, &fds);
timeval timeout_obj;
timeval* timeout;
if (state & user_set_non_blocking)
{
timeout_obj.tv_sec = 0;
timeout_obj.tv_usec = 0;
timeout = &timeout_obj;
}
else if (msec >= 0)
{
timeout_obj.tv_sec = msec / 1000;
timeout_obj.tv_usec = (msec % 1000) * 1000;
timeout = &timeout_obj;
}
else
timeout = 0;
int result = ::select(s + 1, &fds, 0, 0, timeout);
get_last_error(ec, result < 0);
#else // defined(ASIO_WINDOWS)
// || defined(__CYGWIN__)
// || defined(__SYMBIAN32__)
pollfd fds;
fds.fd = s;
fds.events = POLLIN;
fds.revents = 0;
int timeout = (state & user_set_non_blocking) ? 0 : msec;
int result = ::poll(&fds, 1, timeout);
get_last_error(ec, result < 0);
#endif // defined(ASIO_WINDOWS)
// || defined(__CYGWIN__)
// || defined(__SYMBIAN32__)
if (result == 0)
if (state & user_set_non_blocking)
ec = asio::error::would_block;
return result;
}
int poll_write(socket_type s, state_type state,
int msec, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
#if defined(ASIO_WINDOWS) \
|| defined(__CYGWIN__) \
|| defined(__SYMBIAN32__)
fd_set fds;
FD_ZERO(&fds);
FD_SET(s, &fds);
timeval timeout_obj;
timeval* timeout;
if (state & user_set_non_blocking)
{
timeout_obj.tv_sec = 0;
timeout_obj.tv_usec = 0;
timeout = &timeout_obj;
}
else if (msec >= 0)
{
timeout_obj.tv_sec = msec / 1000;
timeout_obj.tv_usec = (msec % 1000) * 1000;
timeout = &timeout_obj;
}
else
timeout = 0;
int result = ::select(s + 1, 0, &fds, 0, timeout);
get_last_error(ec, result < 0);
#else // defined(ASIO_WINDOWS)
// || defined(__CYGWIN__)
// || defined(__SYMBIAN32__)
pollfd fds;
fds.fd = s;
fds.events = POLLOUT;
fds.revents = 0;
int timeout = (state & user_set_non_blocking) ? 0 : msec;
int result = ::poll(&fds, 1, timeout);
get_last_error(ec, result < 0);
#endif // defined(ASIO_WINDOWS)
// || defined(__CYGWIN__)
// || defined(__SYMBIAN32__)
if (result == 0)
if (state & user_set_non_blocking)
ec = asio::error::would_block;
return result;
}
int poll_error(socket_type s, state_type state,
int msec, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
#if defined(ASIO_WINDOWS) \
|| defined(__CYGWIN__) \
|| defined(__SYMBIAN32__)
fd_set fds;
FD_ZERO(&fds);
FD_SET(s, &fds);
timeval timeout_obj;
timeval* timeout;
if (state & user_set_non_blocking)
{
timeout_obj.tv_sec = 0;
timeout_obj.tv_usec = 0;
timeout = &timeout_obj;
}
else if (msec >= 0)
{
timeout_obj.tv_sec = msec / 1000;
timeout_obj.tv_usec = (msec % 1000) * 1000;
timeout = &timeout_obj;
}
else
timeout = 0;
int result = ::select(s + 1, 0, 0, &fds, timeout);
get_last_error(ec, result < 0);
#else // defined(ASIO_WINDOWS)
// || defined(__CYGWIN__)
// || defined(__SYMBIAN32__)
pollfd fds;
fds.fd = s;
fds.events = POLLPRI | POLLERR | POLLHUP;
fds.revents = 0;
int timeout = (state & user_set_non_blocking) ? 0 : msec;
int result = ::poll(&fds, 1, timeout);
get_last_error(ec, result < 0);
#endif // defined(ASIO_WINDOWS)
// || defined(__CYGWIN__)
// || defined(__SYMBIAN32__)
if (result == 0)
if (state & user_set_non_blocking)
ec = asio::error::would_block;
return result;
}
int poll_connect(socket_type s, int msec, asio::error_code& ec)
{
if (s == invalid_socket)
{
ec = asio::error::bad_descriptor;
return socket_error_retval;
}
#if defined(ASIO_WINDOWS) \
|| defined(__CYGWIN__) \
|| defined(__SYMBIAN32__)
fd_set write_fds;
FD_ZERO(&write_fds);
FD_SET(s, &write_fds);
fd_set except_fds;
FD_ZERO(&except_fds);
FD_SET(s, &except_fds);
timeval timeout_obj;
timeval* timeout;
if (msec >= 0)
{
timeout_obj.tv_sec = msec / 1000;
timeout_obj.tv_usec = (msec % 1000) * 1000;
timeout = &timeout_obj;
}
else
timeout = 0;
int result = ::select(s + 1, 0, &write_fds, &except_fds, timeout);
get_last_error(ec, result < 0);
return result;
#else // defined(ASIO_WINDOWS)
// || defined(__CYGWIN__)
// || defined(__SYMBIAN32__)
pollfd fds;
fds.fd = s;
fds.events = POLLOUT;
fds.revents = 0;
int result = ::poll(&fds, 1, msec);
get_last_error(ec, result < 0);
return result;
#endif // defined(ASIO_WINDOWS)
// || defined(__CYGWIN__)
// || defined(__SYMBIAN32__)
}
#endif // !defined(ASIO_WINDOWS_RUNTIME)
const char* inet_ntop(int af, const void* src, char* dest, size_t length,
unsigned long scope_id, asio::error_code& ec)
{
clear_last_error();
#if defined(ASIO_WINDOWS_RUNTIME)
using namespace std; // For sprintf.
const unsigned char* bytes = static_cast<const unsigned char*>(src);
if (af == ASIO_OS_DEF(AF_INET))
{
sprintf_s(dest, length, "%u.%u.%u.%u",
bytes[0], bytes[1], bytes[2], bytes[3]);
return dest;
}
else if (af == ASIO_OS_DEF(AF_INET6))
{
size_t n = 0, b = 0, z = 0;
while (n < length && b < 16)
{
if (bytes[b] == 0 && bytes[b + 1] == 0 && z == 0)
{
do b += 2; while (b < 16 && bytes[b] == 0 && bytes[b + 1] == 0);
n += sprintf_s(dest + n, length - n, ":%s", b < 16 ? "" : ":"), ++z;
}
else
{
n += sprintf_s(dest + n, length - n, "%s%x", b ? ":" : "",
(static_cast<u_long_type>(bytes[b]) << 8) | bytes[b + 1]);
b += 2;
}
}
if (scope_id)
n += sprintf_s(dest + n, length - n, "%%%lu", scope_id);
return dest;
}
else
{
ec = asio::error::address_family_not_supported;
return 0;
}
#elif defined(ASIO_WINDOWS) || defined(__CYGWIN__)
using namespace std; // For memcpy.
if (af != ASIO_OS_DEF(AF_INET) && af != ASIO_OS_DEF(AF_INET6))
{
ec = asio::error::address_family_not_supported;
return 0;
}
union
{
socket_addr_type base;
sockaddr_storage_type storage;
sockaddr_in4_type v4;
sockaddr_in6_type v6;
} address;
DWORD address_length;
if (af == ASIO_OS_DEF(AF_INET))
{
address_length = sizeof(sockaddr_in4_type);
address.v4.sin_family = ASIO_OS_DEF(AF_INET);
address.v4.sin_port = 0;
memcpy(&address.v4.sin_addr, src, sizeof(in4_addr_type));
}
else // AF_INET6
{
address_length = sizeof(sockaddr_in6_type);
address.v6.sin6_family = ASIO_OS_DEF(AF_INET6);
address.v6.sin6_port = 0;
address.v6.sin6_flowinfo = 0;
address.v6.sin6_scope_id = scope_id;
memcpy(&address.v6.sin6_addr, src, sizeof(in6_addr_type));
}
DWORD string_length = static_cast<DWORD>(length);
#if defined(BOOST_NO_ANSI_APIS) || (defined(_MSC_VER) && (_MSC_VER >= 1800))
LPWSTR string_buffer = (LPWSTR)_alloca(length * sizeof(WCHAR));
int result = ::WSAAddressToStringW(&address.base,
address_length, 0, string_buffer, &string_length);
get_last_error(ec, true);
::WideCharToMultiByte(CP_ACP, 0, string_buffer, -1,
dest, static_cast<int>(length), 0, 0);
#else
int result = ::WSAAddressToStringA(&address.base,
address_length, 0, dest, &string_length);
get_last_error(ec, true);
#endif
// Windows may set error code on success.
if (result != socket_error_retval)
asio::error::clear(ec);
// Windows may not set an error code on failure.
else if (result == socket_error_retval && !ec)
ec = asio::error::invalid_argument;
return result == socket_error_retval ? 0 : dest;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
const char* result = ::inet_ntop(af, src, dest, static_cast<int>(length));
get_last_error(ec, true);
if (result == 0 && !ec)
ec = asio::error::invalid_argument;
if (result != 0 && af == ASIO_OS_DEF(AF_INET6) && scope_id != 0)
{
using namespace std; // For strcat and sprintf.
char if_name[(IF_NAMESIZE > 21 ? IF_NAMESIZE : 21) + 1] = "%";
const in6_addr_type* ipv6_address = static_cast<const in6_addr_type*>(src);
bool is_link_local = ((ipv6_address->s6_addr[0] == 0xfe)
&& ((ipv6_address->s6_addr[1] & 0xc0) == 0x80));
bool is_multicast_link_local = ((ipv6_address->s6_addr[0] == 0xff)
&& ((ipv6_address->s6_addr[1] & 0x0f) == 0x02));
if ((!is_link_local && !is_multicast_link_local)
|| if_indextoname(static_cast<unsigned>(scope_id), if_name + 1) == 0)
#if defined(ASIO_HAS_SNPRINTF)
snprintf(if_name + 1, sizeof(if_name) - 1, "%lu", scope_id);
#else // defined(ASIO_HAS_SNPRINTF)
sprintf(if_name + 1, "%lu", scope_id);
#endif // defined(ASIO_HAS_SNPRINTF)
strcat(dest, if_name);
}
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
int inet_pton(int af, const char* src, void* dest,
unsigned long* scope_id, asio::error_code& ec)
{
clear_last_error();
#if defined(ASIO_WINDOWS_RUNTIME)
using namespace std; // For sscanf.
unsigned char* bytes = static_cast<unsigned char*>(dest);
if (af == ASIO_OS_DEF(AF_INET))
{
unsigned int b0, b1, b2, b3;
if (sscanf_s(src, "%u.%u.%u.%u", &b0, &b1, &b2, &b3) != 4)
{
ec = asio::error::invalid_argument;
return -1;
}
if (b0 > 255 || b1 > 255 || b2 > 255 || b3 > 255)
{
ec = asio::error::invalid_argument;
return -1;
}
bytes[0] = static_cast<unsigned char>(b0);
bytes[1] = static_cast<unsigned char>(b1);
bytes[2] = static_cast<unsigned char>(b2);
bytes[3] = static_cast<unsigned char>(b3);
asio::error::clear(ec);
return 1;
}
else if (af == ASIO_OS_DEF(AF_INET6))
{
unsigned char* bytes = static_cast<unsigned char*>(dest);
std::memset(bytes, 0, 16);
unsigned char back_bytes[16] = { 0 };
int num_front_bytes = 0, num_back_bytes = 0;
const char* p = src;
enum { fword, fcolon, bword, scope, done } state = fword;
unsigned long current_word = 0;
while (state != done)
{
if (current_word > 0xFFFF)
{
ec = asio::error::invalid_argument;
return -1;
}
switch (state)
{
case fword:
if (*p >= '0' && *p <= '9')
current_word = current_word * 16 + *p++ - '0';
else if (*p >= 'a' && *p <= 'f')
current_word = current_word * 16 + *p++ - 'a' + 10;
else if (*p >= 'A' && *p <= 'F')
current_word = current_word * 16 + *p++ - 'A' + 10;
else
{
if (num_front_bytes == 16)
{
ec = asio::error::invalid_argument;
return -1;
}
bytes[num_front_bytes++] = (current_word >> 8) & 0xFF;
bytes[num_front_bytes++] = current_word & 0xFF;
current_word = 0;
if (*p == ':')
state = fcolon, ++p;
else if (*p == '%')
state = scope, ++p;
else if (*p == 0)
state = done;
else
{
ec = asio::error::invalid_argument;
return -1;
}
}
break;
case fcolon:
if (*p == ':')
state = bword, ++p;
else
state = fword;
break;
case bword:
if (*p >= '0' && *p <= '9')
current_word = current_word * 16 + *p++ - '0';
else if (*p >= 'a' && *p <= 'f')
current_word = current_word * 16 + *p++ - 'a' + 10;
else if (*p >= 'A' && *p <= 'F')
current_word = current_word * 16 + *p++ - 'A' + 10;
else
{
if (num_front_bytes + num_back_bytes == 16)
{
ec = asio::error::invalid_argument;
return -1;
}
back_bytes[num_back_bytes++] = (current_word >> 8) & 0xFF;
back_bytes[num_back_bytes++] = current_word & 0xFF;
current_word = 0;
if (*p == ':')
state = bword, ++p;
else if (*p == '%')
state = scope, ++p;
else if (*p == 0)
state = done;
else
{
ec = asio::error::invalid_argument;
return -1;
}
}
break;
case scope:
if (*p >= '0' && *p <= '9')
current_word = current_word * 10 + *p++ - '0';
else if (*p == 0)
*scope_id = current_word, state = done;
else
{
ec = asio::error::invalid_argument;
return -1;
}
break;
default:
break;
}
}
for (int i = 0; i < num_back_bytes; ++i)
bytes[16 - num_back_bytes + i] = back_bytes[i];
asio::error::clear(ec);
return 1;
}
else
{
ec = asio::error::address_family_not_supported;
return -1;
}
#elif defined(ASIO_WINDOWS) || defined(__CYGWIN__)
using namespace std; // For memcpy and strcmp.
if (af != ASIO_OS_DEF(AF_INET) && af != ASIO_OS_DEF(AF_INET6))
{
ec = asio::error::address_family_not_supported;
return -1;
}
union
{
socket_addr_type base;
sockaddr_storage_type storage;
sockaddr_in4_type v4;
sockaddr_in6_type v6;
} address;
int address_length = sizeof(sockaddr_storage_type);
#if defined(BOOST_NO_ANSI_APIS) || (defined(_MSC_VER) && (_MSC_VER >= 1800))
int num_wide_chars = static_cast<int>(strlen(src)) + 1;
LPWSTR wide_buffer = (LPWSTR)_alloca(num_wide_chars * sizeof(WCHAR));
::MultiByteToWideChar(CP_ACP, 0, src, -1, wide_buffer, num_wide_chars);
int result = ::WSAStringToAddressW(wide_buffer,
af, 0, &address.base, &address_length);
get_last_error(ec, true);
#else
int result = ::WSAStringToAddressA(const_cast<char*>(src),
af, 0, &address.base, &address_length);
get_last_error(ec, true);
#endif
if (af == ASIO_OS_DEF(AF_INET))
{
if (result != socket_error_retval)
{
memcpy(dest, &address.v4.sin_addr, sizeof(in4_addr_type));
asio::error::clear(ec);
}
else if (strcmp(src, "255.255.255.255") == 0)
{
static_cast<in4_addr_type*>(dest)->s_addr = INADDR_NONE;
asio::error::clear(ec);
}
}
else // AF_INET6
{
if (result != socket_error_retval)
{
memcpy(dest, &address.v6.sin6_addr, sizeof(in6_addr_type));
if (scope_id)
*scope_id = address.v6.sin6_scope_id;
asio::error::clear(ec);
}
}
// Windows may not set an error code on failure.
if (result == socket_error_retval && !ec)
ec = asio::error::invalid_argument;
if (result != socket_error_retval)
asio::error::clear(ec);
return result == socket_error_retval ? -1 : 1;
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
using namespace std; // For strchr, memcpy and atoi.
// On some platforms, inet_pton fails if an address string contains a scope
// id. Detect and remove the scope id before passing the string to inet_pton.
const bool is_v6 = (af == ASIO_OS_DEF(AF_INET6));
const char* if_name = is_v6 ? strchr(src, '%') : 0;
char src_buf[max_addr_v6_str_len + 1];
const char* src_ptr = src;
if (if_name != 0)
{
if (if_name - src > max_addr_v6_str_len)
{
ec = asio::error::invalid_argument;
return 0;
}
memcpy(src_buf, src, if_name - src);
src_buf[if_name - src] = 0;
src_ptr = src_buf;
}
int result = ::inet_pton(af, src_ptr, dest);
get_last_error(ec, true);
if (result <= 0 && !ec)
ec = asio::error::invalid_argument;
if (result > 0 && is_v6 && scope_id)
{
using namespace std; // For strchr and atoi.
*scope_id = 0;
if (if_name != 0)
{
in6_addr_type* ipv6_address = static_cast<in6_addr_type*>(dest);
bool is_link_local = ((ipv6_address->s6_addr[0] == 0xfe)
&& ((ipv6_address->s6_addr[1] & 0xc0) == 0x80));
bool is_multicast_link_local = ((ipv6_address->s6_addr[0] == 0xff)
&& ((ipv6_address->s6_addr[1] & 0x0f) == 0x02));
if (is_link_local || is_multicast_link_local)
*scope_id = if_nametoindex(if_name + 1);
if (*scope_id == 0)
*scope_id = atoi(if_name + 1);
}
}
return result;
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
}
int gethostname(char* name, int namelen, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS_RUNTIME)
try
{
using namespace Windows::Foundation::Collections;
using namespace Windows::Networking;
using namespace Windows::Networking::Connectivity;
IVectorView<HostName^>^ hostnames = NetworkInformation::GetHostNames();
for (unsigned i = 0; i < hostnames->Size; ++i)
{
HostName^ hostname = hostnames->GetAt(i);
if (hostname->Type == HostNameType::DomainName)
{
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::string raw_name = converter.to_bytes(hostname->RawName->Data());
if (namelen > 0 && raw_name.size() < static_cast<std::size_t>(namelen))
{
strcpy_s(name, namelen, raw_name.c_str());
return 0;
}
}
}
return -1;
}
catch (Platform::Exception^ e)
{
ec = asio::error_code(e->HResult,
asio::system_category());
return -1;
}
#else // defined(ASIO_WINDOWS_RUNTIME)
int result = ::gethostname(name, namelen);
get_last_error(ec, result != 0);
return result;
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
#if !defined(ASIO_WINDOWS_RUNTIME)
#if !defined(ASIO_HAS_GETADDRINFO)
// The following functions are only needed for emulation of getaddrinfo and
// getnameinfo.
inline asio::error_code translate_netdb_error(int error)
{
switch (error)
{
case 0:
return asio::error_code();
case HOST_NOT_FOUND:
return asio::error::host_not_found;
case TRY_AGAIN:
return asio::error::host_not_found_try_again;
case NO_RECOVERY:
return asio::error::no_recovery;
case NO_DATA:
return asio::error::no_data;
default:
ASIO_ASSERT(false);
return asio::error::invalid_argument;
}
}
inline hostent* gethostbyaddr(const char* addr, int length, int af,
hostent* result, char* buffer, int buflength, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
(void)(buffer);
(void)(buflength);
hostent* retval = ::gethostbyaddr(addr, length, af);
get_last_error(ec, !retval);
if (!retval)
return 0;
*result = *retval;
return retval;
#elif defined(__sun) || defined(__QNX__)
int error = 0;
hostent* retval = ::gethostbyaddr_r(addr, length,
af, result, buffer, buflength, &error);
get_last_error(ec, !retval);
if (error)
ec = translate_netdb_error(error);
return retval;
#elif defined(__MACH__) && defined(__APPLE__)
(void)(buffer);
(void)(buflength);
int error = 0;
hostent* retval = ::getipnodebyaddr(addr, length, af, &error);
get_last_error(ec, !retval);
if (error)
ec = translate_netdb_error(error);
if (!retval)
return 0;
*result = *retval;
return retval;
#else
hostent* retval = 0;
int error = 0;
clear_last_error();
::gethostbyaddr_r(addr, length, af, result,
buffer, buflength, &retval, &error);
get_last_error(ec, true);
if (error)
ec = translate_netdb_error(error);
return retval;
#endif
}
inline hostent* gethostbyname(const char* name, int af, struct hostent* result,
char* buffer, int buflength, int ai_flags, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
(void)(buffer);
(void)(buflength);
(void)(ai_flags);
if (af != ASIO_OS_DEF(AF_INET))
{
ec = asio::error::address_family_not_supported;
return 0;
}
hostent* retval = ::gethostbyname(name);
get_last_error(ec, !retval);
if (!retval)
return 0;
*result = *retval;
return result;
#elif defined(__sun) || defined(__QNX__)
(void)(ai_flags);
if (af != ASIO_OS_DEF(AF_INET))
{
ec = asio::error::address_family_not_supported;
return 0;
}
int error = 0;
hostent* retval = ::gethostbyname_r(name, result, buffer, buflength, &error);
get_last_error(ec, !retval);
if (error)
ec = translate_netdb_error(error);
return retval;
#elif defined(__MACH__) && defined(__APPLE__)
(void)(buffer);
(void)(buflength);
int error = 0;
hostent* retval = ::getipnodebyname(name, af, ai_flags, &error);
get_last_error(ec, !retval);
if (error)
ec = translate_netdb_error(error);
if (!retval)
return 0;
*result = *retval;
return retval;
#else
(void)(ai_flags);
if (af != ASIO_OS_DEF(AF_INET))
{
ec = asio::error::address_family_not_supported;
return 0;
}
hostent* retval = 0;
int error = 0;
clear_last_error();
::gethostbyname_r(name, result, buffer, buflength, &retval, &error);
get_last_error(ec, true);
if (error)
ec = translate_netdb_error(error);
return retval;
#endif
}
inline void freehostent(hostent* h)
{
#if defined(__MACH__) && defined(__APPLE__)
if (h)
::freehostent(h);
#else
(void)(h);
#endif
}
// Emulation of getaddrinfo based on implementation in:
// Stevens, W. R., UNIX Network Programming Vol. 1, 2nd Ed., Prentice-Hall 1998.
struct gai_search
{
const char* host;
int family;
};
inline int gai_nsearch(const char* host,
const addrinfo_type* hints, gai_search (&search)[2])
{
int search_count = 0;
if (host == 0 || host[0] == '\0')
{
if (hints->ai_flags & AI_PASSIVE)
{
// No host and AI_PASSIVE implies wildcard bind.
switch (hints->ai_family)
{
case ASIO_OS_DEF(AF_INET):
search[search_count].host = "0.0.0.0";
search[search_count].family = ASIO_OS_DEF(AF_INET);
++search_count;
break;
case ASIO_OS_DEF(AF_INET6):
search[search_count].host = "0::0";
search[search_count].family = ASIO_OS_DEF(AF_INET6);
++search_count;
break;
case ASIO_OS_DEF(AF_UNSPEC):
search[search_count].host = "0::0";
search[search_count].family = ASIO_OS_DEF(AF_INET6);
++search_count;
search[search_count].host = "0.0.0.0";
search[search_count].family = ASIO_OS_DEF(AF_INET);
++search_count;
break;
default:
break;
}
}
else
{
// No host and not AI_PASSIVE means connect to local host.
switch (hints->ai_family)
{
case ASIO_OS_DEF(AF_INET):
search[search_count].host = "localhost";
search[search_count].family = ASIO_OS_DEF(AF_INET);
++search_count;
break;
case ASIO_OS_DEF(AF_INET6):
search[search_count].host = "localhost";
search[search_count].family = ASIO_OS_DEF(AF_INET6);
++search_count;
break;
case ASIO_OS_DEF(AF_UNSPEC):
search[search_count].host = "localhost";
search[search_count].family = ASIO_OS_DEF(AF_INET6);
++search_count;
search[search_count].host = "localhost";
search[search_count].family = ASIO_OS_DEF(AF_INET);
++search_count;
break;
default:
break;
}
}
}
else
{
// Host is specified.
switch (hints->ai_family)
{
case ASIO_OS_DEF(AF_INET):
search[search_count].host = host;
search[search_count].family = ASIO_OS_DEF(AF_INET);
++search_count;
break;
case ASIO_OS_DEF(AF_INET6):
search[search_count].host = host;
search[search_count].family = ASIO_OS_DEF(AF_INET6);
++search_count;
break;
case ASIO_OS_DEF(AF_UNSPEC):
search[search_count].host = host;
search[search_count].family = ASIO_OS_DEF(AF_INET6);
++search_count;
search[search_count].host = host;
search[search_count].family = ASIO_OS_DEF(AF_INET);
++search_count;
break;
default:
break;
}
}
return search_count;
}
template <typename T>
inline T* gai_alloc(std::size_t size = sizeof(T))
{
using namespace std;
T* p = static_cast<T*>(::operator new(size, std::nothrow));
if (p)
memset(p, 0, size);
return p;
}
inline void gai_free(void* p)
{
::operator delete(p);
}
inline void gai_strcpy(char* target, const char* source, std::size_t max_size)
{
using namespace std;
#if defined(ASIO_HAS_SECURE_RTL)
strcpy_s(target, max_size, source);
#else // defined(ASIO_HAS_SECURE_RTL)
*target = 0;
if (max_size > 0)
strncat(target, source, max_size - 1);
#endif // defined(ASIO_HAS_SECURE_RTL)
}
enum { gai_clone_flag = 1 << 30 };
inline int gai_aistruct(addrinfo_type*** next, const addrinfo_type* hints,
const void* addr, int family)
{
using namespace std;
addrinfo_type* ai = gai_alloc<addrinfo_type>();
if (ai == 0)
return EAI_MEMORY;
ai->ai_next = 0;
**next = ai;
*next = &ai->ai_next;
ai->ai_canonname = 0;
ai->ai_socktype = hints->ai_socktype;
if (ai->ai_socktype == 0)
ai->ai_flags |= gai_clone_flag;
ai->ai_protocol = hints->ai_protocol;
ai->ai_family = family;
switch (ai->ai_family)
{
case ASIO_OS_DEF(AF_INET):
{
sockaddr_in4_type* sinptr = gai_alloc<sockaddr_in4_type>();
if (sinptr == 0)
return EAI_MEMORY;
sinptr->sin_family = ASIO_OS_DEF(AF_INET);
memcpy(&sinptr->sin_addr, addr, sizeof(in4_addr_type));
ai->ai_addr = reinterpret_cast<sockaddr*>(sinptr);
ai->ai_addrlen = sizeof(sockaddr_in4_type);
break;
}
case ASIO_OS_DEF(AF_INET6):
{
sockaddr_in6_type* sin6ptr = gai_alloc<sockaddr_in6_type>();
if (sin6ptr == 0)
return EAI_MEMORY;
sin6ptr->sin6_family = ASIO_OS_DEF(AF_INET6);
memcpy(&sin6ptr->sin6_addr, addr, sizeof(in6_addr_type));
ai->ai_addr = reinterpret_cast<sockaddr*>(sin6ptr);
ai->ai_addrlen = sizeof(sockaddr_in6_type);
break;
}
default:
break;
}
return 0;
}
inline addrinfo_type* gai_clone(addrinfo_type* ai)
{
using namespace std;
addrinfo_type* new_ai = gai_alloc<addrinfo_type>();
if (new_ai == 0)
return new_ai;
new_ai->ai_next = ai->ai_next;
ai->ai_next = new_ai;
new_ai->ai_flags = 0;
new_ai->ai_family = ai->ai_family;
new_ai->ai_socktype = ai->ai_socktype;
new_ai->ai_protocol = ai->ai_protocol;
new_ai->ai_canonname = 0;
new_ai->ai_addrlen = ai->ai_addrlen;
new_ai->ai_addr = gai_alloc<sockaddr>(ai->ai_addrlen);
memcpy(new_ai->ai_addr, ai->ai_addr, ai->ai_addrlen);
return new_ai;
}
inline int gai_port(addrinfo_type* aihead, int port, int socktype)
{
int num_found = 0;
for (addrinfo_type* ai = aihead; ai; ai = ai->ai_next)
{
if (ai->ai_flags & gai_clone_flag)
{
if (ai->ai_socktype != 0)
{
ai = gai_clone(ai);
if (ai == 0)
return -1;
// ai now points to newly cloned entry.
}
}
else if (ai->ai_socktype != socktype)
{
// Ignore if mismatch on socket type.
continue;
}
ai->ai_socktype = socktype;
switch (ai->ai_family)
{
case ASIO_OS_DEF(AF_INET):
{
sockaddr_in4_type* sinptr =
reinterpret_cast<sockaddr_in4_type*>(ai->ai_addr);
sinptr->sin_port = port;
++num_found;
break;
}
case ASIO_OS_DEF(AF_INET6):
{
sockaddr_in6_type* sin6ptr =
reinterpret_cast<sockaddr_in6_type*>(ai->ai_addr);
sin6ptr->sin6_port = port;
++num_found;
break;
}
default:
break;
}
}
return num_found;
}
inline int gai_serv(addrinfo_type* aihead,
const addrinfo_type* hints, const char* serv)
{
using namespace std;
int num_found = 0;
if (
#if defined(AI_NUMERICSERV)
(hints->ai_flags & AI_NUMERICSERV) ||
#endif
isdigit(static_cast<unsigned char>(serv[0])))
{
int port = htons(atoi(serv));
if (hints->ai_socktype)
{
// Caller specifies socket type.
int rc = gai_port(aihead, port, hints->ai_socktype);
if (rc < 0)
return EAI_MEMORY;
num_found += rc;
}
else
{
// Caller does not specify socket type.
int rc = gai_port(aihead, port, SOCK_STREAM);
if (rc < 0)
return EAI_MEMORY;
num_found += rc;
rc = gai_port(aihead, port, SOCK_DGRAM);
if (rc < 0)
return EAI_MEMORY;
num_found += rc;
}
}
else
{
// Try service name with TCP first, then UDP.
if (hints->ai_socktype == 0 || hints->ai_socktype == SOCK_STREAM)
{
servent* sptr = getservbyname(serv, "tcp");
if (sptr != 0)
{
int rc = gai_port(aihead, sptr->s_port, SOCK_STREAM);
if (rc < 0)
return EAI_MEMORY;
num_found += rc;
}
}
if (hints->ai_socktype == 0 || hints->ai_socktype == SOCK_DGRAM)
{
servent* sptr = getservbyname(serv, "udp");
if (sptr != 0)
{
int rc = gai_port(aihead, sptr->s_port, SOCK_DGRAM);
if (rc < 0)
return EAI_MEMORY;
num_found += rc;
}
}
}
if (num_found == 0)
{
if (hints->ai_socktype == 0)
{
// All calls to getservbyname() failed.
return EAI_NONAME;
}
else
{
// Service not supported for socket type.
return EAI_SERVICE;
}
}
return 0;
}
inline int gai_echeck(const char* host, const char* service,
int flags, int family, int socktype, int protocol)
{
(void)(flags);
(void)(protocol);
// Host or service must be specified.
if (host == 0 || host[0] == '\0')
if (service == 0 || service[0] == '\0')
return EAI_NONAME;
// Check combination of family and socket type.
switch (family)
{
case ASIO_OS_DEF(AF_UNSPEC):
break;
case ASIO_OS_DEF(AF_INET):
case ASIO_OS_DEF(AF_INET6):
if (service != 0 && service[0] != '\0')
if (socktype != 0 && socktype != SOCK_STREAM && socktype != SOCK_DGRAM)
return EAI_SOCKTYPE;
break;
default:
return EAI_FAMILY;
}
return 0;
}
inline void freeaddrinfo_emulation(addrinfo_type* aihead)
{
addrinfo_type* ai = aihead;
while (ai)
{
gai_free(ai->ai_addr);
gai_free(ai->ai_canonname);
addrinfo_type* ainext = ai->ai_next;
gai_free(ai);
ai = ainext;
}
}
inline int getaddrinfo_emulation(const char* host, const char* service,
const addrinfo_type* hintsp, addrinfo_type** result)
{
// Set up linked list of addrinfo structures.
addrinfo_type* aihead = 0;
addrinfo_type** ainext = &aihead;
char* canon = 0;
// Supply default hints if not specified by caller.
addrinfo_type hints = addrinfo_type();
hints.ai_family = ASIO_OS_DEF(AF_UNSPEC);
if (hintsp)
hints = *hintsp;
// If the resolution is not specifically for AF_INET6, remove the AI_V4MAPPED
// and AI_ALL flags.
#if defined(AI_V4MAPPED)
if (hints.ai_family != ASIO_OS_DEF(AF_INET6))
hints.ai_flags &= ~AI_V4MAPPED;
#endif
#if defined(AI_ALL)
if (hints.ai_family != ASIO_OS_DEF(AF_INET6))
hints.ai_flags &= ~AI_ALL;
#endif
// Basic error checking.
int rc = gai_echeck(host, service, hints.ai_flags, hints.ai_family,
hints.ai_socktype, hints.ai_protocol);
if (rc != 0)
{
freeaddrinfo_emulation(aihead);
return rc;
}
gai_search search[2];
int search_count = gai_nsearch(host, &hints, search);
for (gai_search* sptr = search; sptr < search + search_count; ++sptr)
{
// Check for IPv4 dotted decimal string.
in4_addr_type inaddr;
asio::error_code ec;
if (socket_ops::inet_pton(ASIO_OS_DEF(AF_INET),
sptr->host, &inaddr, 0, ec) == 1)
{
if (hints.ai_family != ASIO_OS_DEF(AF_UNSPEC)
&& hints.ai_family != ASIO_OS_DEF(AF_INET))
{
freeaddrinfo_emulation(aihead);
gai_free(canon);
return EAI_FAMILY;
}
if (sptr->family == ASIO_OS_DEF(AF_INET))
{
rc = gai_aistruct(&ainext, &hints, &inaddr, ASIO_OS_DEF(AF_INET));
if (rc != 0)
{
freeaddrinfo_emulation(aihead);
gai_free(canon);
return rc;
}
}
continue;
}
// Check for IPv6 hex string.
in6_addr_type in6addr;
if (socket_ops::inet_pton(ASIO_OS_DEF(AF_INET6),
sptr->host, &in6addr, 0, ec) == 1)
{
if (hints.ai_family != ASIO_OS_DEF(AF_UNSPEC)
&& hints.ai_family != ASIO_OS_DEF(AF_INET6))
{
freeaddrinfo_emulation(aihead);
gai_free(canon);
return EAI_FAMILY;
}
if (sptr->family == ASIO_OS_DEF(AF_INET6))
{
rc = gai_aistruct(&ainext, &hints, &in6addr,
ASIO_OS_DEF(AF_INET6));
if (rc != 0)
{
freeaddrinfo_emulation(aihead);
gai_free(canon);
return rc;
}
}
continue;
}
// Look up hostname.
hostent hent;
char hbuf[8192] = "";
hostent* hptr = socket_ops::gethostbyname(sptr->host,
sptr->family, &hent, hbuf, sizeof(hbuf), hints.ai_flags, ec);
if (hptr == 0)
{
if (search_count == 2)
{
// Failure is OK if there are multiple searches.
continue;
}
freeaddrinfo_emulation(aihead);
gai_free(canon);
if (ec == asio::error::host_not_found)
return EAI_NONAME;
if (ec == asio::error::host_not_found_try_again)
return EAI_AGAIN;
if (ec == asio::error::no_recovery)
return EAI_FAIL;
if (ec == asio::error::no_data)
return EAI_NONAME;
return EAI_NONAME;
}
// Check for address family mismatch if one was specified.
if (hints.ai_family != ASIO_OS_DEF(AF_UNSPEC)
&& hints.ai_family != hptr->h_addrtype)
{
freeaddrinfo_emulation(aihead);
gai_free(canon);
socket_ops::freehostent(hptr);
return EAI_FAMILY;
}
// Save canonical name first time.
if (host != 0 && host[0] != '\0' && hptr->h_name && hptr->h_name[0]
&& (hints.ai_flags & AI_CANONNAME) && canon == 0)
{
std::size_t canon_len = strlen(hptr->h_name) + 1;
canon = gai_alloc<char>(canon_len);
if (canon == 0)
{
freeaddrinfo_emulation(aihead);
socket_ops::freehostent(hptr);
return EAI_MEMORY;
}
gai_strcpy(canon, hptr->h_name, canon_len);
}
// Create an addrinfo structure for each returned address.
for (char** ap = hptr->h_addr_list; *ap; ++ap)
{
rc = gai_aistruct(&ainext, &hints, *ap, hptr->h_addrtype);
if (rc != 0)
{
freeaddrinfo_emulation(aihead);
gai_free(canon);
socket_ops::freehostent(hptr);
return EAI_FAMILY;
}
}
socket_ops::freehostent(hptr);
}
// Check if we found anything.
if (aihead == 0)
{
gai_free(canon);
return EAI_NONAME;
}
// Return canonical name in first entry.
if (host != 0 && host[0] != '\0' && (hints.ai_flags & AI_CANONNAME))
{
if (canon)
{
aihead->ai_canonname = canon;
canon = 0;
}
else
{
std::size_t canonname_len = strlen(search[0].host) + 1;
aihead->ai_canonname = gai_alloc<char>(canonname_len);
if (aihead->ai_canonname == 0)
{
freeaddrinfo_emulation(aihead);
return EAI_MEMORY;
}
gai_strcpy(aihead->ai_canonname, search[0].host, canonname_len);
}
}
gai_free(canon);
// Process the service name.
if (service != 0 && service[0] != '\0')
{
rc = gai_serv(aihead, &hints, service);
if (rc != 0)
{
freeaddrinfo_emulation(aihead);
return rc;
}
}
// Return result to caller.
*result = aihead;
return 0;
}
inline asio::error_code getnameinfo_emulation(
const socket_addr_type* sa, std::size_t salen, char* host,
std::size_t hostlen, char* serv, std::size_t servlen, int flags,
asio::error_code& ec)
{
using namespace std;
const char* addr;
size_t addr_len;
unsigned short port;
switch (sa->sa_family)
{
case ASIO_OS_DEF(AF_INET):
if (salen != sizeof(sockaddr_in4_type))
{
return ec = asio::error::invalid_argument;
}
addr = reinterpret_cast<const char*>(
&reinterpret_cast<const sockaddr_in4_type*>(sa)->sin_addr);
addr_len = sizeof(in4_addr_type);
port = reinterpret_cast<const sockaddr_in4_type*>(sa)->sin_port;
break;
case ASIO_OS_DEF(AF_INET6):
if (salen != sizeof(sockaddr_in6_type))
{
return ec = asio::error::invalid_argument;
}
addr = reinterpret_cast<const char*>(
&reinterpret_cast<const sockaddr_in6_type*>(sa)->sin6_addr);
addr_len = sizeof(in6_addr_type);
port = reinterpret_cast<const sockaddr_in6_type*>(sa)->sin6_port;
break;
default:
return ec = asio::error::address_family_not_supported;
}
if (host && hostlen > 0)
{
if (flags & NI_NUMERICHOST)
{
if (socket_ops::inet_ntop(sa->sa_family, addr, host, hostlen, 0, ec) == 0)
{
return ec;
}
}
else
{
hostent hent;
char hbuf[8192] = "";
hostent* hptr = socket_ops::gethostbyaddr(addr,
static_cast<int>(addr_len), sa->sa_family,
&hent, hbuf, sizeof(hbuf), ec);
if (hptr && hptr->h_name && hptr->h_name[0] != '\0')
{
if (flags & NI_NOFQDN)
{
char* dot = strchr(hptr->h_name, '.');
if (dot)
{
*dot = 0;
}
}
gai_strcpy(host, hptr->h_name, hostlen);
socket_ops::freehostent(hptr);
}
else
{
socket_ops::freehostent(hptr);
if (flags & NI_NAMEREQD)
{
return ec = asio::error::host_not_found;
}
if (socket_ops::inet_ntop(sa->sa_family,
addr, host, hostlen, 0, ec) == 0)
{
return ec;
}
}
}
}
if (serv && servlen > 0)
{
if (flags & NI_NUMERICSERV)
{
if (servlen < 6)
{
return ec = asio::error::no_buffer_space;
}
#if defined(ASIO_HAS_SNPRINTF)
snprintf(serv, servlen, "%u", ntohs(port));
#elif defined(ASIO_HAS_SECURE_RTL)
sprintf_s(serv, servlen, "%u", ntohs(port));
#else // defined(ASIO_HAS_SECURE_RTL)
sprintf(serv, "%u", ntohs(port));
#endif // defined(ASIO_HAS_SECURE_RTL)
}
else
{
#if defined(ASIO_HAS_PTHREADS)
static ::pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
::pthread_mutex_lock(&mutex);
#endif // defined(ASIO_HAS_PTHREADS)
servent* sptr = ::getservbyport(port, (flags & NI_DGRAM) ? "udp" : 0);
if (sptr && sptr->s_name && sptr->s_name[0] != '\0')
{
gai_strcpy(serv, sptr->s_name, servlen);
}
else
{
if (servlen < 6)
{
return ec = asio::error::no_buffer_space;
}
#if defined(ASIO_HAS_SNPRINTF)
snprintf(serv, servlen, "%u", ntohs(port));
#elif defined(ASIO_HAS_SECURE_RTL)
sprintf_s(serv, servlen, "%u", ntohs(port));
#else // defined(ASIO_HAS_SECURE_RTL)
sprintf(serv, "%u", ntohs(port));
#endif // defined(ASIO_HAS_SECURE_RTL)
}
#if defined(ASIO_HAS_PTHREADS)
::pthread_mutex_unlock(&mutex);
#endif // defined(ASIO_HAS_PTHREADS)
}
}
asio::error::clear(ec);
return ec;
}
#endif // !defined(ASIO_HAS_GETADDRINFO)
inline asio::error_code translate_addrinfo_error(int error)
{
switch (error)
{
case 0:
return asio::error_code();
case EAI_AGAIN:
return asio::error::host_not_found_try_again;
case EAI_BADFLAGS:
return asio::error::invalid_argument;
case EAI_FAIL:
return asio::error::no_recovery;
case EAI_FAMILY:
return asio::error::address_family_not_supported;
case EAI_MEMORY:
return asio::error::no_memory;
case EAI_NONAME:
#if defined(EAI_ADDRFAMILY)
case EAI_ADDRFAMILY:
#endif
#if defined(EAI_NODATA) && (EAI_NODATA != EAI_NONAME)
case EAI_NODATA:
#endif
return asio::error::host_not_found;
case EAI_SERVICE:
return asio::error::service_not_found;
case EAI_SOCKTYPE:
return asio::error::socket_type_not_supported;
default: // Possibly the non-portable EAI_SYSTEM.
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
return asio::error_code(
WSAGetLastError(), asio::error::get_system_category());
#else
return asio::error_code(
errno, asio::error::get_system_category());
#endif
}
}
asio::error_code getaddrinfo(const char* host,
const char* service, const addrinfo_type& hints,
addrinfo_type** result, asio::error_code& ec)
{
host = (host && *host) ? host : 0;
service = (service && *service) ? service : 0;
clear_last_error();
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
# if defined(ASIO_HAS_GETADDRINFO)
// Building for Windows XP, Windows Server 2003, or later.
int error = ::getaddrinfo(host, service, &hints, result);
return ec = translate_addrinfo_error(error);
# else
// Building for Windows 2000 or earlier.
typedef int (WSAAPI *gai_t)(const char*,
const char*, const addrinfo_type*, addrinfo_type**);
if (HMODULE winsock_module = ::GetModuleHandleA("ws2_32"))
{
if (gai_t gai = (gai_t)::GetProcAddress(winsock_module, "getaddrinfo"))
{
int error = gai(host, service, &hints, result);
return ec = translate_addrinfo_error(error);
}
}
int error = getaddrinfo_emulation(host, service, &hints, result);
return ec = translate_addrinfo_error(error);
# endif
#elif !defined(ASIO_HAS_GETADDRINFO)
int error = getaddrinfo_emulation(host, service, &hints, result);
return ec = translate_addrinfo_error(error);
#else
int error = ::getaddrinfo(host, service, &hints, result);
#if defined(__MACH__) && defined(__APPLE__)
using namespace std; // For isdigit and atoi.
if (error == 0 && service && isdigit(static_cast<unsigned char>(service[0])))
{
u_short_type port = host_to_network_short(atoi(service));
for (addrinfo_type* ai = *result; ai; ai = ai->ai_next)
{
switch (ai->ai_family)
{
case ASIO_OS_DEF(AF_INET):
{
sockaddr_in4_type* sinptr =
reinterpret_cast<sockaddr_in4_type*>(ai->ai_addr);
if (sinptr->sin_port == 0)
sinptr->sin_port = port;
break;
}
case ASIO_OS_DEF(AF_INET6):
{
sockaddr_in6_type* sin6ptr =
reinterpret_cast<sockaddr_in6_type*>(ai->ai_addr);
if (sin6ptr->sin6_port == 0)
sin6ptr->sin6_port = port;
break;
}
default:
break;
}
}
}
#endif
return ec = translate_addrinfo_error(error);
#endif
}
asio::error_code background_getaddrinfo(
const weak_cancel_token_type& cancel_token, const char* host,
const char* service, const addrinfo_type& hints,
addrinfo_type** result, asio::error_code& ec)
{
if (cancel_token.expired())
ec = asio::error::operation_aborted;
else
socket_ops::getaddrinfo(host, service, hints, result, ec);
return ec;
}
void freeaddrinfo(addrinfo_type* ai)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
# if defined(ASIO_HAS_GETADDRINFO)
// Building for Windows XP, Windows Server 2003, or later.
::freeaddrinfo(ai);
# else
// Building for Windows 2000 or earlier.
typedef int (WSAAPI *fai_t)(addrinfo_type*);
if (HMODULE winsock_module = ::GetModuleHandleA("ws2_32"))
{
if (fai_t fai = (fai_t)::GetProcAddress(winsock_module, "freeaddrinfo"))
{
fai(ai);
return;
}
}
freeaddrinfo_emulation(ai);
# endif
#elif !defined(ASIO_HAS_GETADDRINFO)
freeaddrinfo_emulation(ai);
#else
::freeaddrinfo(ai);
#endif
}
asio::error_code getnameinfo(const void* addr,
std::size_t addrlen, char* host, std::size_t hostlen,
char* serv, std::size_t servlen, int flags, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
# if defined(ASIO_HAS_GETADDRINFO)
// Building for Windows XP, Windows Server 2003, or later.
clear_last_error();
int error = ::getnameinfo(static_cast<const socket_addr_type*>(addr),
static_cast<socklen_t>(addrlen), host, static_cast<DWORD>(hostlen),
serv, static_cast<DWORD>(servlen), flags);
return ec = translate_addrinfo_error(error);
# else
// Building for Windows 2000 or earlier.
typedef int (WSAAPI *gni_t)(const socket_addr_type*,
int, char*, DWORD, char*, DWORD, int);
if (HMODULE winsock_module = ::GetModuleHandleA("ws2_32"))
{
if (gni_t gni = (gni_t)::GetProcAddress(winsock_module, "getnameinfo"))
{
clear_last_error();
int error = gni(static_cast<const socket_addr_type*>(addr),
static_cast<int>(addrlen), host, static_cast<DWORD>(hostlen),
serv, static_cast<DWORD>(servlen), flags);
return ec = translate_addrinfo_error(error);
}
}
clear_last_error();
return getnameinfo_emulation(static_cast<const socket_addr_type*>(addr),
addrlen, host, hostlen, serv, servlen, flags, ec);
# endif
#elif !defined(ASIO_HAS_GETADDRINFO)
using namespace std; // For memcpy.
sockaddr_storage_type tmp_addr;
memcpy(&tmp_addr, addr, addrlen);
addr = &tmp_addr;
clear_last_error();
return getnameinfo_emulation(static_cast<const socket_addr_type*>(addr),
addrlen, host, hostlen, serv, servlen, flags, ec);
#else
clear_last_error();
int error = ::getnameinfo(static_cast<const socket_addr_type*>(addr),
addrlen, host, hostlen, serv, servlen, flags);
return ec = translate_addrinfo_error(error);
#endif
}
asio::error_code sync_getnameinfo(const void* addr,
std::size_t addrlen, char* host, std::size_t hostlen, char* serv,
std::size_t servlen, int sock_type, asio::error_code& ec)
{
// First try resolving with the service name. If that fails try resolving
// but allow the service to be returned as a number.
int flags = (sock_type == SOCK_DGRAM) ? NI_DGRAM : 0;
socket_ops::getnameinfo(addr, addrlen, host,
hostlen, serv, servlen, flags, ec);
if (ec)
{
socket_ops::getnameinfo(addr, addrlen, host, hostlen,
serv, servlen, flags | NI_NUMERICSERV, ec);
}
return ec;
}
asio::error_code background_getnameinfo(
const weak_cancel_token_type& cancel_token,
const void* addr, std::size_t addrlen,
char* host, std::size_t hostlen, char* serv,
std::size_t servlen, int sock_type, asio::error_code& ec)
{
if (cancel_token.expired())
{
ec = asio::error::operation_aborted;
}
else
{
// First try resolving with the service name. If that fails try resolving
// but allow the service to be returned as a number.
int flags = (sock_type == SOCK_DGRAM) ? NI_DGRAM : 0;
socket_ops::getnameinfo(addr, addrlen, host,
hostlen, serv, servlen, flags, ec);
if (ec)
{
socket_ops::getnameinfo(addr, addrlen, host, hostlen,
serv, servlen, flags | NI_NUMERICSERV, ec);
}
}
return ec;
}
#endif // !defined(ASIO_WINDOWS_RUNTIME)
u_long_type network_to_host_long(u_long_type value)
{
#if defined(ASIO_WINDOWS_RUNTIME)
unsigned char* value_p = reinterpret_cast<unsigned char*>(&value);
u_long_type result = (static_cast<u_long_type>(value_p[0]) << 24)
| (static_cast<u_long_type>(value_p[1]) << 16)
| (static_cast<u_long_type>(value_p[2]) << 8)
| static_cast<u_long_type>(value_p[3]);
return result;
#else // defined(ASIO_WINDOWS_RUNTIME)
return ntohl(value);
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
u_long_type host_to_network_long(u_long_type value)
{
#if defined(ASIO_WINDOWS_RUNTIME)
u_long_type result;
unsigned char* result_p = reinterpret_cast<unsigned char*>(&result);
result_p[0] = static_cast<unsigned char>((value >> 24) & 0xFF);
result_p[1] = static_cast<unsigned char>((value >> 16) & 0xFF);
result_p[2] = static_cast<unsigned char>((value >> 8) & 0xFF);
result_p[3] = static_cast<unsigned char>(value & 0xFF);
return result;
#else // defined(ASIO_WINDOWS_RUNTIME)
return htonl(value);
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
u_short_type network_to_host_short(u_short_type value)
{
#if defined(ASIO_WINDOWS_RUNTIME)
unsigned char* value_p = reinterpret_cast<unsigned char*>(&value);
u_short_type result = (static_cast<u_short_type>(value_p[0]) << 8)
| static_cast<u_short_type>(value_p[1]);
return result;
#else // defined(ASIO_WINDOWS_RUNTIME)
return ntohs(value);
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
u_short_type host_to_network_short(u_short_type value)
{
#if defined(ASIO_WINDOWS_RUNTIME)
u_short_type result;
unsigned char* result_p = reinterpret_cast<unsigned char*>(&result);
result_p[0] = static_cast<unsigned char>((value >> 8) & 0xFF);
result_p[1] = static_cast<unsigned char>(value & 0xFF);
return result;
#else // defined(ASIO_WINDOWS_RUNTIME)
return htons(value);
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
} // namespace socket_ops
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_SOCKET_OPS_IPP