Insane_DNS/libraries/asio-1.28.1/include/asio/impl/io_context.hpp

451 lines
13 KiB
C++

//
// impl/io_context.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_IMPL_IO_CONTEXT_HPP
#define ASIO_IMPL_IO_CONTEXT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/completion_handler.hpp"
#include "asio/detail/executor_op.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/service_registry.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
#if !defined(GENERATING_DOCUMENTATION)
template <typename Service>
inline Service& use_service(io_context& ioc)
{
// Check that Service meets the necessary type requirements.
(void)static_cast<execution_context::service*>(static_cast<Service*>(0));
(void)static_cast<const execution_context::id*>(&Service::id);
return ioc.service_registry_->template use_service<Service>(ioc);
}
template <>
inline detail::io_context_impl& use_service<detail::io_context_impl>(
io_context& ioc)
{
return ioc.impl_;
}
#endif // !defined(GENERATING_DOCUMENTATION)
inline io_context::executor_type
io_context::get_executor() ASIO_NOEXCEPT
{
return executor_type(*this);
}
#if defined(ASIO_HAS_CHRONO)
template <typename Rep, typename Period>
std::size_t io_context::run_for(
const chrono::duration<Rep, Period>& rel_time)
{
return this->run_until(chrono::steady_clock::now() + rel_time);
}
template <typename Clock, typename Duration>
std::size_t io_context::run_until(
const chrono::time_point<Clock, Duration>& abs_time)
{
std::size_t n = 0;
while (this->run_one_until(abs_time))
if (n != (std::numeric_limits<std::size_t>::max)())
++n;
return n;
}
template <typename Rep, typename Period>
std::size_t io_context::run_one_for(
const chrono::duration<Rep, Period>& rel_time)
{
return this->run_one_until(chrono::steady_clock::now() + rel_time);
}
template <typename Clock, typename Duration>
std::size_t io_context::run_one_until(
const chrono::time_point<Clock, Duration>& abs_time)
{
typename Clock::time_point now = Clock::now();
while (now < abs_time)
{
typename Clock::duration rel_time = abs_time - now;
if (rel_time > chrono::seconds(1))
rel_time = chrono::seconds(1);
asio::error_code ec;
std::size_t s = impl_.wait_one(
static_cast<long>(chrono::duration_cast<
chrono::microseconds>(rel_time).count()), ec);
asio::detail::throw_error(ec);
if (s || impl_.stopped())
return s;
now = Clock::now();
}
return 0;
}
#endif // defined(ASIO_HAS_CHRONO)
#if !defined(ASIO_NO_DEPRECATED)
inline void io_context::reset()
{
restart();
}
struct io_context::initiate_dispatch
{
template <typename LegacyCompletionHandler>
void operator()(ASIO_MOVE_ARG(LegacyCompletionHandler) handler,
io_context* self) const
{
// If you get an error on the following line it means that your handler does
// not meet the documented type requirements for a LegacyCompletionHandler.
ASIO_LEGACY_COMPLETION_HANDLER_CHECK(
LegacyCompletionHandler, handler) type_check;
detail::non_const_lvalue<LegacyCompletionHandler> handler2(handler);
if (self->impl_.can_dispatch())
{
detail::fenced_block b(detail::fenced_block::full);
asio_handler_invoke_helpers::invoke(
handler2.value, handler2.value);
}
else
{
// Allocate and construct an operation to wrap the handler.
typedef detail::completion_handler<
typename decay<LegacyCompletionHandler>::type, executor_type> op;
typename op::ptr p = { detail::addressof(handler2.value),
op::ptr::allocate(handler2.value), 0 };
p.p = new (p.v) op(handler2.value, self->get_executor());
ASIO_HANDLER_CREATION((*self, *p.p,
"io_context", self, 0, "dispatch"));
self->impl_.do_dispatch(p.p);
p.v = p.p = 0;
}
}
};
template <typename LegacyCompletionHandler>
ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX(LegacyCompletionHandler, void ())
io_context::dispatch(ASIO_MOVE_ARG(LegacyCompletionHandler) handler)
ASIO_INITFN_AUTO_RESULT_TYPE_SUFFIX((
async_initiate<LegacyCompletionHandler, void ()>(
declval<initiate_dispatch>(), handler, this)))
{
return async_initiate<LegacyCompletionHandler, void ()>(
initiate_dispatch(), handler, this);
}
struct io_context::initiate_post
{
template <typename LegacyCompletionHandler>
void operator()(ASIO_MOVE_ARG(LegacyCompletionHandler) handler,
io_context* self) const
{
// If you get an error on the following line it means that your handler does
// not meet the documented type requirements for a LegacyCompletionHandler.
ASIO_LEGACY_COMPLETION_HANDLER_CHECK(
LegacyCompletionHandler, handler) type_check;
detail::non_const_lvalue<LegacyCompletionHandler> handler2(handler);
bool is_continuation =
asio_handler_cont_helpers::is_continuation(handler2.value);
// Allocate and construct an operation to wrap the handler.
typedef detail::completion_handler<
typename decay<LegacyCompletionHandler>::type, executor_type> op;
typename op::ptr p = { detail::addressof(handler2.value),
op::ptr::allocate(handler2.value), 0 };
p.p = new (p.v) op(handler2.value, self->get_executor());
ASIO_HANDLER_CREATION((*self, *p.p,
"io_context", self, 0, "post"));
self->impl_.post_immediate_completion(p.p, is_continuation);
p.v = p.p = 0;
}
};
template <typename LegacyCompletionHandler>
ASIO_INITFN_AUTO_RESULT_TYPE_PREFIX(LegacyCompletionHandler, void ())
io_context::post(ASIO_MOVE_ARG(LegacyCompletionHandler) handler)
ASIO_INITFN_AUTO_RESULT_TYPE_SUFFIX((
async_initiate<LegacyCompletionHandler, void ()>(
declval<initiate_post>(), handler, this)))
{
return async_initiate<LegacyCompletionHandler, void ()>(
initiate_post(), handler, this);
}
template <typename Handler>
#if defined(GENERATING_DOCUMENTATION)
unspecified
#else
inline detail::wrapped_handler<io_context&, Handler>
#endif
io_context::wrap(Handler handler)
{
return detail::wrapped_handler<io_context&, Handler>(*this, handler);
}
#endif // !defined(ASIO_NO_DEPRECATED)
template <typename Allocator, uintptr_t Bits>
io_context::basic_executor_type<Allocator, Bits>&
io_context::basic_executor_type<Allocator, Bits>::operator=(
const basic_executor_type& other) ASIO_NOEXCEPT
{
if (this != &other)
{
static_cast<Allocator&>(*this) = static_cast<const Allocator&>(other);
io_context* old_io_context = context_ptr();
target_ = other.target_;
if (Bits & outstanding_work_tracked)
{
if (context_ptr())
context_ptr()->impl_.work_started();
if (old_io_context)
old_io_context->impl_.work_finished();
}
}
return *this;
}
#if defined(ASIO_HAS_MOVE)
template <typename Allocator, uintptr_t Bits>
io_context::basic_executor_type<Allocator, Bits>&
io_context::basic_executor_type<Allocator, Bits>::operator=(
basic_executor_type&& other) ASIO_NOEXCEPT
{
if (this != &other)
{
static_cast<Allocator&>(*this) = static_cast<Allocator&&>(other);
io_context* old_io_context = context_ptr();
target_ = other.target_;
if (Bits & outstanding_work_tracked)
{
other.target_ = 0;
if (old_io_context)
old_io_context->impl_.work_finished();
}
}
return *this;
}
#endif // defined(ASIO_HAS_MOVE)
template <typename Allocator, uintptr_t Bits>
inline bool io_context::basic_executor_type<Allocator,
Bits>::running_in_this_thread() const ASIO_NOEXCEPT
{
return context_ptr()->impl_.can_dispatch();
}
template <typename Allocator, uintptr_t Bits>
template <typename Function>
void io_context::basic_executor_type<Allocator, Bits>::execute(
ASIO_MOVE_ARG(Function) f) const
{
typedef typename decay<Function>::type function_type;
// Invoke immediately if the blocking.possibly property is enabled and we are
// already inside the thread pool.
if ((bits() & blocking_never) == 0 && context_ptr()->impl_.can_dispatch())
{
// Make a local, non-const copy of the function.
function_type tmp(ASIO_MOVE_CAST(Function)(f));
#if defined(ASIO_HAS_STD_EXCEPTION_PTR) \
&& !defined(ASIO_NO_EXCEPTIONS)
try
{
#endif // defined(ASIO_HAS_STD_EXCEPTION_PTR)
// && !defined(ASIO_NO_EXCEPTIONS)
detail::fenced_block b(detail::fenced_block::full);
asio_handler_invoke_helpers::invoke(tmp, tmp);
return;
#if defined(ASIO_HAS_STD_EXCEPTION_PTR) \
&& !defined(ASIO_NO_EXCEPTIONS)
}
catch (...)
{
context_ptr()->impl_.capture_current_exception();
return;
}
#endif // defined(ASIO_HAS_STD_EXCEPTION_PTR)
// && !defined(ASIO_NO_EXCEPTIONS)
}
// Allocate and construct an operation to wrap the function.
typedef detail::executor_op<function_type, Allocator, detail::operation> op;
typename op::ptr p = {
detail::addressof(static_cast<const Allocator&>(*this)),
op::ptr::allocate(static_cast<const Allocator&>(*this)), 0 };
p.p = new (p.v) op(ASIO_MOVE_CAST(Function)(f),
static_cast<const Allocator&>(*this));
ASIO_HANDLER_CREATION((*context_ptr(), *p.p,
"io_context", context_ptr(), 0, "execute"));
context_ptr()->impl_.post_immediate_completion(p.p,
(bits() & relationship_continuation) != 0);
p.v = p.p = 0;
}
#if !defined(ASIO_NO_TS_EXECUTORS)
template <typename Allocator, uintptr_t Bits>
inline io_context& io_context::basic_executor_type<
Allocator, Bits>::context() const ASIO_NOEXCEPT
{
return *context_ptr();
}
template <typename Allocator, uintptr_t Bits>
inline void io_context::basic_executor_type<Allocator,
Bits>::on_work_started() const ASIO_NOEXCEPT
{
context_ptr()->impl_.work_started();
}
template <typename Allocator, uintptr_t Bits>
inline void io_context::basic_executor_type<Allocator,
Bits>::on_work_finished() const ASIO_NOEXCEPT
{
context_ptr()->impl_.work_finished();
}
template <typename Allocator, uintptr_t Bits>
template <typename Function, typename OtherAllocator>
void io_context::basic_executor_type<Allocator, Bits>::dispatch(
ASIO_MOVE_ARG(Function) f, const OtherAllocator& a) const
{
typedef typename decay<Function>::type function_type;
// Invoke immediately if we are already inside the thread pool.
if (context_ptr()->impl_.can_dispatch())
{
// Make a local, non-const copy of the function.
function_type tmp(ASIO_MOVE_CAST(Function)(f));
detail::fenced_block b(detail::fenced_block::full);
asio_handler_invoke_helpers::invoke(tmp, tmp);
return;
}
// Allocate and construct an operation to wrap the function.
typedef detail::executor_op<function_type,
OtherAllocator, detail::operation> op;
typename op::ptr p = { detail::addressof(a), op::ptr::allocate(a), 0 };
p.p = new (p.v) op(ASIO_MOVE_CAST(Function)(f), a);
ASIO_HANDLER_CREATION((*context_ptr(), *p.p,
"io_context", context_ptr(), 0, "dispatch"));
context_ptr()->impl_.post_immediate_completion(p.p, false);
p.v = p.p = 0;
}
template <typename Allocator, uintptr_t Bits>
template <typename Function, typename OtherAllocator>
void io_context::basic_executor_type<Allocator, Bits>::post(
ASIO_MOVE_ARG(Function) f, const OtherAllocator& a) const
{
typedef typename decay<Function>::type function_type;
// Allocate and construct an operation to wrap the function.
typedef detail::executor_op<function_type,
OtherAllocator, detail::operation> op;
typename op::ptr p = { detail::addressof(a), op::ptr::allocate(a), 0 };
p.p = new (p.v) op(ASIO_MOVE_CAST(Function)(f), a);
ASIO_HANDLER_CREATION((*context_ptr(), *p.p,
"io_context", context_ptr(), 0, "post"));
context_ptr()->impl_.post_immediate_completion(p.p, false);
p.v = p.p = 0;
}
template <typename Allocator, uintptr_t Bits>
template <typename Function, typename OtherAllocator>
void io_context::basic_executor_type<Allocator, Bits>::defer(
ASIO_MOVE_ARG(Function) f, const OtherAllocator& a) const
{
typedef typename decay<Function>::type function_type;
// Allocate and construct an operation to wrap the function.
typedef detail::executor_op<function_type,
OtherAllocator, detail::operation> op;
typename op::ptr p = { detail::addressof(a), op::ptr::allocate(a), 0 };
p.p = new (p.v) op(ASIO_MOVE_CAST(Function)(f), a);
ASIO_HANDLER_CREATION((*context_ptr(), *p.p,
"io_context", context_ptr(), 0, "defer"));
context_ptr()->impl_.post_immediate_completion(p.p, true);
p.v = p.p = 0;
}
#endif // !defined(ASIO_NO_TS_EXECUTORS)
#if !defined(ASIO_NO_DEPRECATED)
inline io_context::work::work(asio::io_context& io_context)
: io_context_impl_(io_context.impl_)
{
io_context_impl_.work_started();
}
inline io_context::work::work(const work& other)
: io_context_impl_(other.io_context_impl_)
{
io_context_impl_.work_started();
}
inline io_context::work::~work()
{
io_context_impl_.work_finished();
}
inline asio::io_context& io_context::work::get_io_context()
{
return static_cast<asio::io_context&>(io_context_impl_.context());
}
#endif // !defined(ASIO_NO_DEPRECATED)
inline asio::io_context& io_context::service::get_io_context()
{
return static_cast<asio::io_context&>(context());
}
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_IMPL_IO_CONTEXT_HPP