Parks-n-Rec/include/genetic/genetic.h

249 lines
8.9 KiB
C
Raw Normal View History

2023-07-12 21:38:34 -04:00
//
// Created by brett on 7/11/23.
//
#ifndef PARKSNREC_GENETIC_H
#define PARKSNREC_GENETIC_H
#include <genetic/operators.h>
#include <imgui.h>
#include <ImNodes.h>
#include "ImNodesEz.h"
#include <queue>
namespace parks::genetic {
class InvalidTreeException : public std::runtime_error {
public:
explicit InvalidTreeException(const std::string& message): std::runtime_error(message) {}
};
class OperatorSet {
private:
std::vector<Operator*> operators;
public:
OperatorSet() = default;
void add(Operator* op){
operators.push_back(op);
}
Operator* operator[](int index) const {
return operators[index];
}
[[nodiscard]] size_t size() const {
return operators.size();
}
~OperatorSet(){
for (Operator* op : operators)
delete op;
}
};
class Program;
class Node {
private:
friend Program;
Node* left;
Node* right;
OperatorSet& set;
int op = 0;
public:
/**
* Gives ownership of the left / right node to this node!
* @param left left subtree
* @param right right subtree
* @param op operator to apply
*/
Node(OperatorSet& set, int op, Node* left = nullptr, Node* right = nullptr): left(left), right(right), set(set), op(op) {
if (op == -1)
throw InvalidTreeException("Node operator must be assigned!");
}
/**
* Applies the subtree operators by supplying the x / y / time params to the left and right subtrees then using the results in the operator
* @param x current x in the image
* @param y current y in the image
* @param time current time
* @return operator value
*/
Color apply(double x, double y, unsigned int time){
Color left_v(0);
Color right_v(0);
if (left != nullptr)
left_v = left->apply(x, y, time);
if (right != nullptr)
right_v = right->apply(x, y, time);
return set[op]->apply(x, y, time, left_v, right_v);
}
~Node() {
delete left;
delete right;
}
};
class Program {
private:
struct ImNode_t
{
int depth;
size_t index;
int opCode;
ImVec2 pos{};
bool selected{};
ImNodes::Ez::SlotInfo inputs[1];
ImNodes::Ez::SlotInfo outputs[2];
};
int height = 0;
Node* root;
OperatorSet set;
std::vector<ImNode_t> nodes;
Node* constructLeaf(){
return new Node(set, randomInt(0, 2), nullptr, nullptr);
}
Node* constructTree(int depth) {
// TODO: remove magic numbers!
if (depth == 0)
return constructLeaf();
if (randomInt(0, 100) == 0)
return constructLeaf();
return new Node(set, randomInt(0, (int)set.size()), constructTree(depth - 1),
constructTree(depth - 1));
}
int heightInternal(Node* parent){
if (parent == nullptr)
return 1;
int left = heightInternal(parent->left);
int right = heightInternal(parent->right);
return std::max(left, right) + 1;
}
void constructNodeList() {
if (root == nullptr)
return;
std::deque<Node*> nodesQueue;
nodesQueue.push_back(root);
int depth = 0;
while (!nodesQueue.empty()) {
auto levelSize = nodesQueue.size();
auto currentLevelSize = nodesQueue.size();
while (currentLevelSize-- != 0){
auto node = nodesQueue.front();
nodesQueue.pop_front();
if (node == nullptr)
continue;
nodesQueue.push_back(node->left);
nodesQueue.push_back(node->right);
ImNode_t newNode;
newNode.depth = depth;
newNode.index = currentLevelSize;
newNode.opCode = node->op;
newNode.pos = {static_cast<float>(250 * depth), static_cast<float>(100 * currentLevelSize)};
newNode.inputs[0] = {"In", 1};
newNode.outputs[0] = {"Left", 1};
newNode.outputs[1] = {"Right", 1};
newNode.selected = false;
nodes.push_back(newNode);
}
depth++;
}
}
public:
Program(){
set.add(new XOperator);
set.add(new YOperator);
set.add(new ZeroOperator);
set.add(new OneOperator);
set.add(new MultiplicationOperator);
set.add(new AdditionOperator);
set.add(new SubtractionOperator);
// set.add(new ModOperator);
// set.add(new MinOperator);
// set.add(new MaxOperator);
// set.add(new LogOperator);
set.add(new PerlinBWOperator);
set.add(new PerlinColorOperator);
set.add(new PerlinRidgeOperator);
set.add(new PerlinFBMOperator);
set.add(new PerlinTurbulenceOperator);
set.add(new ColorNoiseOperator);
//auto numberOfNodes = randomInt(10, 10);
root = constructTree(7);
constructNodeList();
// root = new Node(set, 12, new Node(set, 5, new Node(set, 16, nullptr, nullptr), new Node(set, 0,
// nullptr,
// nullptr)),
// new Node(set, 5, new Node(set, 16, nullptr, nullptr), new Node(set, 1,
// nullptr,
// nullptr)));
}
int getHeight(){
if (height != 0)
return height;
height = heightInternal(root);
}
void drawTree(){
static ImNodes::Ez::Context* context = ImNodes::Ez::CreateContext();
IM_UNUSED(context);
if (ImGui::Begin("ImNodes", nullptr, ImGuiWindowFlags_NoScrollbar | ImGuiWindowFlags_NoScrollWithMouse))
{
ImNodes::Ez::BeginCanvas();
for (ImNode_t& node : nodes)
{
if (ImNodes::Ez::BeginNode(&node, ("D: " + std::to_string(node.depth) + " | " + std::to_string(node.index) + " : " + set[node.opCode]->opString).c_str(), &node.pos, &node.selected))
{
ImNodes::Ez::InputSlots(node.inputs, 1);
ImNodes::Ez::OutputSlots(node.outputs, 2);
ImNodes::Ez::EndNode();
}
}
//ImNodes::Connection(&nodes[1], "In", &nodes[0], "Out");
//ImNodes::Connection(&nodes[2], "In", &nodes[0], "Out");
ImNodes::Ez::EndCanvas();
}
ImGui::End();
}
Color apply(double x, double y, unsigned int time){
return root->apply(x, y, time);
}
~Program(){
delete root;
}
};
inline unsigned char filter(double input){
return (unsigned char) ((unsigned long)std::abs(((input) * 255)) % 255);
}
}
#endif //PARKSNREC_GENETIC_H