add ability to do steady state GPs. Untested currently.

main
Brett 2025-04-01 20:55:40 -04:00
parent 577f3d613c
commit 08e44fb4bd
4 changed files with 1007 additions and 893 deletions

View File

@ -27,7 +27,7 @@ macro(compile_options target_name)
sanitizers(${target_name})
endmacro()
project(blt-gp VERSION 0.3.34)
project(blt-gp VERSION 0.4.0)
include(CTest)

View File

@ -26,191 +26,201 @@
namespace blt::gp::example
{
class symbolic_regression_t : public example_base_t
{
public:
struct context
{
float x, y;
};
class symbolic_regression_t : public example_base_t
{
public:
struct context
{
float x, y;
};
private:
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) const
{
constexpr static double value_cutoff = 1.e15;
for (auto& fitness_case : training_cases)
{
const auto diff = std::abs(fitness_case.y - current_tree.get_evaluation_value<float>(fitness_case));
if (diff < value_cutoff)
{
fitness.raw_fitness += diff;
if (diff <= 0.01)
fitness.hits++;
}
else
fitness.raw_fitness += value_cutoff;
}
fitness.standardized_fitness = fitness.raw_fitness;
fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness));
return static_cast<size_t>(fitness.hits) == training_cases.size();
}
private:
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) const
{
constexpr static double value_cutoff = 1.e15;
for (auto& fitness_case : training_cases)
{
const auto diff = std::abs(fitness_case.y - current_tree.get_evaluation_value<float>(fitness_case));
if (diff < value_cutoff)
{
fitness.raw_fitness += diff;
if (diff <= 0.01)
fitness.hits++;
} else
fitness.raw_fitness += value_cutoff;
}
fitness.standardized_fitness = fitness.raw_fitness;
fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness));
return static_cast<size_t>(fitness.hits) == training_cases.size();
}
static float example_function(const float x)
{
return x * x * x * x + x * x * x + x * x + x;
}
static float example_function(const float x)
{
return x * x * x * x + x * x * x + x * x + x;
}
public:
template <typename SEED>
symbolic_regression_t(SEED seed, const prog_config_t& config): example_base_t{std::forward<SEED>(seed), config}
{
BLT_INFO("Starting BLT-GP Symbolic Regression Example");
BLT_DEBUG("Setup Fitness cases");
for (auto& fitness_case : training_cases)
{
constexpr float range = 10;
constexpr float half_range = range / 2.0;
const auto x = program.get_random().get_float(-half_range, half_range);
const auto y = example_function(x);
fitness_case = {x, y};
}
public:
template <typename SEED>
symbolic_regression_t(SEED seed, const prog_config_t& config): example_base_t{std::forward<SEED>(seed), config}
{
BLT_INFO("Starting BLT-GP Symbolic Regression Example");
BLT_DEBUG("Setup Fitness cases");
for (auto& fitness_case : training_cases)
{
constexpr float range = 10;
constexpr float half_range = range / 2.0;
const auto x = program.get_random().get_float(-half_range, half_range);
const auto y = example_function(x);
fitness_case = {x, y};
}
fitness_function_ref = [this](const tree_t& t, fitness_t& f, const size_t i)
{
return fitness_function(t, f, i);
};
}
fitness_function_ref = [this](const tree_t& t, fitness_t& f, const size_t i) {
return fitness_function(t, f, i);
};
}
void setup_operations()
{
BLT_DEBUG("Setup Types and Operators");
static operation_t add{
// this is the function used by the operation
[](const float a, const float b)
{
return a + b;
},
// this name is optional and is used if you print an individual
"add"
};
static operation_t sub([](const float a, const float b) { return a - b; }, "sub");
static operation_t mul([](const float a, const float b) { return a * b; }, "mul");
static operation_t pro_div([](const float a, const float b) { return b == 0.0f ? 0.0f : a / b; }, "div");
static operation_t op_sin([](const float a) { return std::sin(a); }, "sin");
static operation_t op_cos([](const float a) { return std::cos(a); }, "cos");
static operation_t op_exp([](const float a) { return std::exp(a); }, "exp");
static operation_t op_log([](const float a) { return a <= 0.0f ? 0.0f : std::log(a); }, "log");
static auto lit = operation_t([this]()
{
return program.get_random().get_float(-1.0f, 1.0f);
}, "lit").set_ephemeral();
void setup_operations()
{
BLT_DEBUG("Setup Types and Operators");
static operation_t add{
// this is the function used by the operation
[](const float a, const float b) {
return a + b;
},
// this name is optional and is used if you print an individual
"add"
};
static operation_t sub([](const float a, const float b) {
return a - b;
}, "sub");
static operation_t mul([](const float a, const float b) {
return a * b;
}, "mul");
static operation_t pro_div([](const float a, const float b) {
return b == 0.0f ? 0.0f : a / b;
}, "div");
static operation_t op_sin([](const float a) {
return std::sin(a);
}, "sin");
static operation_t op_cos([](const float a) {
return std::cos(a);
}, "cos");
static operation_t op_exp([](const float a) {
return std::exp(a);
}, "exp");
static operation_t op_log([](const float a) {
return a <= 0.0f ? 0.0f : std::log(a);
}, "log");
static auto lit = operation_t([this]() {
return program.get_random().get_float(-1.0f, 1.0f);
}, "lit").set_ephemeral();
static operation_t op_x([](const context& context)
{
return context.x;
}, "x");
static operation_t op_x([](const context& context) {
return context.x;
}, "x");
operator_builder<context> builder{};
builder.build(add, sub, mul, pro_div, op_sin, op_cos, op_exp, op_log, lit, op_x);
program.set_operations(builder.grab());
}
operator_builder<context> builder{};
builder.build(add, sub, mul, pro_div, op_sin, op_cos, op_exp, op_log, lit, op_x);
program.set_operations(builder.grab());
}
void generate_initial_population()
{
BLT_DEBUG("Generate Initial Population");
static auto sel = select_tournament_t{};
if (crossover_sel == nullptr)
crossover_sel = &sel;
if (mutation_sel == nullptr)
mutation_sel = &sel;
if (reproduction_sel == nullptr)
reproduction_sel = &sel;
program.generate_population(program.get_typesystem().get_type<float>().id(), fitness_function_ref, *crossover_sel, *mutation_sel,
*reproduction_sel);
}
void generate_initial_population()
{
BLT_DEBUG("Generate Initial Population");
static auto sel = select_tournament_t{};
if (crossover_sel == nullptr)
crossover_sel = &sel;
if (mutation_sel == nullptr)
mutation_sel = &sel;
if (reproduction_sel == nullptr)
reproduction_sel = &sel;
program.generate_initial_population(program.get_typesystem().get_type<float>().id());
program.setup_generational_evaluation(fitness_function_ref, *crossover_sel,
*mutation_sel, *reproduction_sel);
}
void run_generation_loop()
{
BLT_DEBUG("Begin Generation Loop");
while (!program.should_terminate())
{
#ifdef BLT_TRACK_ALLOCATIONS
void run_generation_loop()
{
BLT_DEBUG("Begin Generation Loop");
while (!program.should_terminate())
{
#ifdef BLT_TRACK_ALLOCATIONS
auto cross = crossover_calls.start_measurement();
auto mut = mutation_calls.start_measurement();
auto repo = reproduction_calls.start_measurement();
#endif
BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation());
BLT_TRACE("Creating next generation");
program.create_next_generation();
BLT_TRACE("Move to next generation");
program.next_generation();
BLT_TRACE("Evaluate Fitness");
program.evaluate_fitness();
const auto& stats = program.get_population_stats();
BLT_TRACE("Avg Fit: %lf, Best Fit: %lf, Worst Fit: %lf, Overall Fit: %lf",
stats.average_fitness.load(std::memory_order_relaxed), stats.best_fitness.load(std::memory_order_relaxed),
stats.worst_fitness.load(std::memory_order_relaxed), stats.overall_fitness.load(std::memory_order_relaxed));
#ifdef BLT_TRACK_ALLOCATIONS
#endif
BLT_TRACE("------------\\{Begin Generation {}}------------", program.get_current_generation());
BLT_TRACE("Creating next generation");
program.create_next_generation();
BLT_TRACE("Move to next generation");
program.next_generation();
BLT_TRACE("Evaluate Fitness");
program.evaluate_fitness();
const auto& stats = program.get_population_stats();
BLT_TRACE("Avg Fit: {:0.6f}, Best Fit: {:0.6f}, Worst Fit: {:0.6f}, Overall Fit: {:0.6f}", stats.average_fitness.load(std::memory_order_relaxed),
stats.best_fitness.load(std::memory_order_relaxed), stats.worst_fitness.load(std::memory_order_relaxed),
stats.overall_fitness.load(std::memory_order_relaxed));
#ifdef BLT_TRACK_ALLOCATIONS
crossover_calls.stop_measurement(cross);
mutation_calls.stop_measurement(mut);
reproduction_calls.stop_measurement(repo);
const auto total = (cross.get_call_difference() * 2) + mut.get_call_difference() + repo.get_call_difference();
BLT_TRACE("Calls Crossover: %ld, Mutation %ld, Reproduction %ld; %ld", cross.get_call_difference(), mut.get_call_difference(), repo.get_call_difference(), total);
BLT_TRACE("Value Crossover: %ld, Mutation %ld, Reproduction %ld; %ld", cross.get_value_difference(), mut.get_value_difference(), repo.get_value_difference(), (cross.get_value_difference() * 2 + mut.get_value_difference() + repo.get_value_difference()) - total);
#endif
BLT_TRACE("----------------------------------------------");
std::cout << std::endl;
}
}
BLT_TRACE("Calls Crossover: {}, Mutation {}, Reproduction {}; {}", cross.get_call_difference(), mut.get_call_difference(), repo.get_call_difference(), total);
BLT_TRACE("Value Crossover: {}, Mutation {}, Reproduction {}; {}", cross.get_value_difference(), mut.get_value_difference(), repo.get_value_difference(), (cross.get_value_difference() * 2 + mut.get_value_difference() + repo.get_value_difference()) - total);
#endif
BLT_TRACE("----------------------------------------------");
std::cout << std::endl;
}
}
auto get_and_print_best()
{
const auto best = program.get_best_individuals<3>();
auto get_and_print_best()
{
const auto best = program.get_best_individuals<3>();
BLT_INFO("Best approximations:");
for (auto& i_ref : best)
{
auto& i = i_ref.get();
BLT_DEBUG("Fitness: %lf, stand: %lf, raw: %lf", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness);
i.tree.print(std::cout);
std::cout << "\n";
}
BLT_INFO("Best approximations:");
for (auto& i_ref : best)
{
auto& i = i_ref.get();
BLT_DEBUG("Fitness: {:0.6f}, stand: {:0.6f}, raw: {:0.6f}", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness);
i.tree.print(std::cout);
std::cout << "\n";
}
return best;
}
return best;
}
void print_stats() const
{
// TODO: make stats helper
const auto& stats = program.get_population_stats();
BLT_INFO("Stats:");
BLT_INFO("Average fitness: %lf", stats.average_fitness.load());
BLT_INFO("Best fitness: %lf", stats.best_fitness.load());
BLT_INFO("Worst fitness: %lf", stats.worst_fitness.load());
BLT_INFO("Overall fitness: %lf", stats.overall_fitness.load());
}
void print_stats() const
{
// TODO: make stats helper
const auto& stats = program.get_population_stats();
BLT_INFO("Stats:");
BLT_INFO("Average fitness: %lf", stats.average_fitness.load());
BLT_INFO("Best fitness: %lf", stats.best_fitness.load());
BLT_INFO("Worst fitness: %lf", stats.worst_fitness.load());
BLT_INFO("Overall fitness: %lf", stats.overall_fitness.load());
}
void execute()
{
setup_operations();
void execute()
{
setup_operations();
generate_initial_population();
generate_initial_population();
run_generation_loop();
run_generation_loop();
get_and_print_best();
get_and_print_best();
print_stats();
}
print_stats();
}
[[nodiscard]] const auto& get_training_cases() const
{
return training_cases;
}
[[nodiscard]] const auto& get_training_cases() const
{
return training_cases;
}
private:
std::array<context, 200> training_cases{};
};
private:
std::array<context, 200> training_cases{};
};
}
#endif //BLT_GP_EXAMPLE_SYMBOLIC_REGRESSION_H

File diff suppressed because it is too large Load Diff

View File

@ -26,36 +26,36 @@ namespace blt::gp
static advanced_mutation_t s_mutator;
static crossover_t s_crossover;
static ramped_half_initializer_t s_init;
prog_config_t::prog_config_t(): mutator(s_mutator), crossover(s_crossover), pop_initializer(s_init)
{
}
prog_config_t::prog_config_t(const std::reference_wrapper<population_initializer_t>& popInitializer):
mutator(s_mutator), crossover(s_crossover), pop_initializer(popInitializer)
{}
prog_config_t::prog_config_t(size_t populationSize, const std::reference_wrapper<population_initializer_t>& popInitializer):
population_size(populationSize), mutator(s_mutator), crossover(s_crossover), pop_initializer(popInitializer)
{}
prog_config_t::prog_config_t(size_t populationSize):
population_size(populationSize), mutator(s_mutator), crossover(s_crossover), pop_initializer(s_init)
{}
random_t& gp_program::get_random() const
{
thread_local static blt::gp::random_t random_engine{seed_func()};
return random_engine;
}
stack_allocator::Allocator& stack_allocator::get_allocator()
{
static Allocator allocator;
return allocator;
}
void gp_program::create_threads()
{
#ifdef BLT_TRACK_ALLOCATIONS