add ability to do steady state GPs. Untested currently.
parent
577f3d613c
commit
08e44fb4bd
|
@ -27,7 +27,7 @@ macro(compile_options target_name)
|
|||
sanitizers(${target_name})
|
||||
endmacro()
|
||||
|
||||
project(blt-gp VERSION 0.3.34)
|
||||
project(blt-gp VERSION 0.4.0)
|
||||
|
||||
include(CTest)
|
||||
|
||||
|
|
|
@ -26,191 +26,201 @@
|
|||
|
||||
namespace blt::gp::example
|
||||
{
|
||||
class symbolic_regression_t : public example_base_t
|
||||
{
|
||||
public:
|
||||
struct context
|
||||
{
|
||||
float x, y;
|
||||
};
|
||||
class symbolic_regression_t : public example_base_t
|
||||
{
|
||||
public:
|
||||
struct context
|
||||
{
|
||||
float x, y;
|
||||
};
|
||||
|
||||
private:
|
||||
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) const
|
||||
{
|
||||
constexpr static double value_cutoff = 1.e15;
|
||||
for (auto& fitness_case : training_cases)
|
||||
{
|
||||
const auto diff = std::abs(fitness_case.y - current_tree.get_evaluation_value<float>(fitness_case));
|
||||
if (diff < value_cutoff)
|
||||
{
|
||||
fitness.raw_fitness += diff;
|
||||
if (diff <= 0.01)
|
||||
fitness.hits++;
|
||||
}
|
||||
else
|
||||
fitness.raw_fitness += value_cutoff;
|
||||
}
|
||||
fitness.standardized_fitness = fitness.raw_fitness;
|
||||
fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness));
|
||||
return static_cast<size_t>(fitness.hits) == training_cases.size();
|
||||
}
|
||||
private:
|
||||
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) const
|
||||
{
|
||||
constexpr static double value_cutoff = 1.e15;
|
||||
for (auto& fitness_case : training_cases)
|
||||
{
|
||||
const auto diff = std::abs(fitness_case.y - current_tree.get_evaluation_value<float>(fitness_case));
|
||||
if (diff < value_cutoff)
|
||||
{
|
||||
fitness.raw_fitness += diff;
|
||||
if (diff <= 0.01)
|
||||
fitness.hits++;
|
||||
} else
|
||||
fitness.raw_fitness += value_cutoff;
|
||||
}
|
||||
fitness.standardized_fitness = fitness.raw_fitness;
|
||||
fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness));
|
||||
return static_cast<size_t>(fitness.hits) == training_cases.size();
|
||||
}
|
||||
|
||||
static float example_function(const float x)
|
||||
{
|
||||
return x * x * x * x + x * x * x + x * x + x;
|
||||
}
|
||||
static float example_function(const float x)
|
||||
{
|
||||
return x * x * x * x + x * x * x + x * x + x;
|
||||
}
|
||||
|
||||
public:
|
||||
template <typename SEED>
|
||||
symbolic_regression_t(SEED seed, const prog_config_t& config): example_base_t{std::forward<SEED>(seed), config}
|
||||
{
|
||||
BLT_INFO("Starting BLT-GP Symbolic Regression Example");
|
||||
BLT_DEBUG("Setup Fitness cases");
|
||||
for (auto& fitness_case : training_cases)
|
||||
{
|
||||
constexpr float range = 10;
|
||||
constexpr float half_range = range / 2.0;
|
||||
const auto x = program.get_random().get_float(-half_range, half_range);
|
||||
const auto y = example_function(x);
|
||||
fitness_case = {x, y};
|
||||
}
|
||||
public:
|
||||
template <typename SEED>
|
||||
symbolic_regression_t(SEED seed, const prog_config_t& config): example_base_t{std::forward<SEED>(seed), config}
|
||||
{
|
||||
BLT_INFO("Starting BLT-GP Symbolic Regression Example");
|
||||
BLT_DEBUG("Setup Fitness cases");
|
||||
for (auto& fitness_case : training_cases)
|
||||
{
|
||||
constexpr float range = 10;
|
||||
constexpr float half_range = range / 2.0;
|
||||
const auto x = program.get_random().get_float(-half_range, half_range);
|
||||
const auto y = example_function(x);
|
||||
fitness_case = {x, y};
|
||||
}
|
||||
|
||||
fitness_function_ref = [this](const tree_t& t, fitness_t& f, const size_t i)
|
||||
{
|
||||
return fitness_function(t, f, i);
|
||||
};
|
||||
}
|
||||
fitness_function_ref = [this](const tree_t& t, fitness_t& f, const size_t i) {
|
||||
return fitness_function(t, f, i);
|
||||
};
|
||||
}
|
||||
|
||||
void setup_operations()
|
||||
{
|
||||
BLT_DEBUG("Setup Types and Operators");
|
||||
static operation_t add{
|
||||
// this is the function used by the operation
|
||||
[](const float a, const float b)
|
||||
{
|
||||
return a + b;
|
||||
},
|
||||
// this name is optional and is used if you print an individual
|
||||
"add"
|
||||
};
|
||||
static operation_t sub([](const float a, const float b) { return a - b; }, "sub");
|
||||
static operation_t mul([](const float a, const float b) { return a * b; }, "mul");
|
||||
static operation_t pro_div([](const float a, const float b) { return b == 0.0f ? 0.0f : a / b; }, "div");
|
||||
static operation_t op_sin([](const float a) { return std::sin(a); }, "sin");
|
||||
static operation_t op_cos([](const float a) { return std::cos(a); }, "cos");
|
||||
static operation_t op_exp([](const float a) { return std::exp(a); }, "exp");
|
||||
static operation_t op_log([](const float a) { return a <= 0.0f ? 0.0f : std::log(a); }, "log");
|
||||
static auto lit = operation_t([this]()
|
||||
{
|
||||
return program.get_random().get_float(-1.0f, 1.0f);
|
||||
}, "lit").set_ephemeral();
|
||||
void setup_operations()
|
||||
{
|
||||
BLT_DEBUG("Setup Types and Operators");
|
||||
static operation_t add{
|
||||
// this is the function used by the operation
|
||||
[](const float a, const float b) {
|
||||
return a + b;
|
||||
},
|
||||
// this name is optional and is used if you print an individual
|
||||
"add"
|
||||
};
|
||||
static operation_t sub([](const float a, const float b) {
|
||||
return a - b;
|
||||
}, "sub");
|
||||
static operation_t mul([](const float a, const float b) {
|
||||
return a * b;
|
||||
}, "mul");
|
||||
static operation_t pro_div([](const float a, const float b) {
|
||||
return b == 0.0f ? 0.0f : a / b;
|
||||
}, "div");
|
||||
static operation_t op_sin([](const float a) {
|
||||
return std::sin(a);
|
||||
}, "sin");
|
||||
static operation_t op_cos([](const float a) {
|
||||
return std::cos(a);
|
||||
}, "cos");
|
||||
static operation_t op_exp([](const float a) {
|
||||
return std::exp(a);
|
||||
}, "exp");
|
||||
static operation_t op_log([](const float a) {
|
||||
return a <= 0.0f ? 0.0f : std::log(a);
|
||||
}, "log");
|
||||
static auto lit = operation_t([this]() {
|
||||
return program.get_random().get_float(-1.0f, 1.0f);
|
||||
}, "lit").set_ephemeral();
|
||||
|
||||
static operation_t op_x([](const context& context)
|
||||
{
|
||||
return context.x;
|
||||
}, "x");
|
||||
static operation_t op_x([](const context& context) {
|
||||
return context.x;
|
||||
}, "x");
|
||||
|
||||
operator_builder<context> builder{};
|
||||
builder.build(add, sub, mul, pro_div, op_sin, op_cos, op_exp, op_log, lit, op_x);
|
||||
program.set_operations(builder.grab());
|
||||
}
|
||||
operator_builder<context> builder{};
|
||||
builder.build(add, sub, mul, pro_div, op_sin, op_cos, op_exp, op_log, lit, op_x);
|
||||
program.set_operations(builder.grab());
|
||||
}
|
||||
|
||||
void generate_initial_population()
|
||||
{
|
||||
BLT_DEBUG("Generate Initial Population");
|
||||
static auto sel = select_tournament_t{};
|
||||
if (crossover_sel == nullptr)
|
||||
crossover_sel = &sel;
|
||||
if (mutation_sel == nullptr)
|
||||
mutation_sel = &sel;
|
||||
if (reproduction_sel == nullptr)
|
||||
reproduction_sel = &sel;
|
||||
program.generate_population(program.get_typesystem().get_type<float>().id(), fitness_function_ref, *crossover_sel, *mutation_sel,
|
||||
*reproduction_sel);
|
||||
}
|
||||
void generate_initial_population()
|
||||
{
|
||||
BLT_DEBUG("Generate Initial Population");
|
||||
static auto sel = select_tournament_t{};
|
||||
if (crossover_sel == nullptr)
|
||||
crossover_sel = &sel;
|
||||
if (mutation_sel == nullptr)
|
||||
mutation_sel = &sel;
|
||||
if (reproduction_sel == nullptr)
|
||||
reproduction_sel = &sel;
|
||||
program.generate_initial_population(program.get_typesystem().get_type<float>().id());
|
||||
program.setup_generational_evaluation(fitness_function_ref, *crossover_sel,
|
||||
*mutation_sel, *reproduction_sel);
|
||||
}
|
||||
|
||||
void run_generation_loop()
|
||||
{
|
||||
BLT_DEBUG("Begin Generation Loop");
|
||||
while (!program.should_terminate())
|
||||
{
|
||||
#ifdef BLT_TRACK_ALLOCATIONS
|
||||
void run_generation_loop()
|
||||
{
|
||||
BLT_DEBUG("Begin Generation Loop");
|
||||
while (!program.should_terminate())
|
||||
{
|
||||
#ifdef BLT_TRACK_ALLOCATIONS
|
||||
auto cross = crossover_calls.start_measurement();
|
||||
auto mut = mutation_calls.start_measurement();
|
||||
auto repo = reproduction_calls.start_measurement();
|
||||
#endif
|
||||
BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation());
|
||||
BLT_TRACE("Creating next generation");
|
||||
program.create_next_generation();
|
||||
BLT_TRACE("Move to next generation");
|
||||
program.next_generation();
|
||||
BLT_TRACE("Evaluate Fitness");
|
||||
program.evaluate_fitness();
|
||||
const auto& stats = program.get_population_stats();
|
||||
BLT_TRACE("Avg Fit: %lf, Best Fit: %lf, Worst Fit: %lf, Overall Fit: %lf",
|
||||
stats.average_fitness.load(std::memory_order_relaxed), stats.best_fitness.load(std::memory_order_relaxed),
|
||||
stats.worst_fitness.load(std::memory_order_relaxed), stats.overall_fitness.load(std::memory_order_relaxed));
|
||||
#ifdef BLT_TRACK_ALLOCATIONS
|
||||
#endif
|
||||
BLT_TRACE("------------\\{Begin Generation {}}------------", program.get_current_generation());
|
||||
BLT_TRACE("Creating next generation");
|
||||
program.create_next_generation();
|
||||
BLT_TRACE("Move to next generation");
|
||||
program.next_generation();
|
||||
BLT_TRACE("Evaluate Fitness");
|
||||
program.evaluate_fitness();
|
||||
const auto& stats = program.get_population_stats();
|
||||
BLT_TRACE("Avg Fit: {:0.6f}, Best Fit: {:0.6f}, Worst Fit: {:0.6f}, Overall Fit: {:0.6f}", stats.average_fitness.load(std::memory_order_relaxed),
|
||||
stats.best_fitness.load(std::memory_order_relaxed), stats.worst_fitness.load(std::memory_order_relaxed),
|
||||
stats.overall_fitness.load(std::memory_order_relaxed));
|
||||
#ifdef BLT_TRACK_ALLOCATIONS
|
||||
crossover_calls.stop_measurement(cross);
|
||||
mutation_calls.stop_measurement(mut);
|
||||
reproduction_calls.stop_measurement(repo);
|
||||
const auto total = (cross.get_call_difference() * 2) + mut.get_call_difference() + repo.get_call_difference();
|
||||
BLT_TRACE("Calls Crossover: %ld, Mutation %ld, Reproduction %ld; %ld", cross.get_call_difference(), mut.get_call_difference(), repo.get_call_difference(), total);
|
||||
BLT_TRACE("Value Crossover: %ld, Mutation %ld, Reproduction %ld; %ld", cross.get_value_difference(), mut.get_value_difference(), repo.get_value_difference(), (cross.get_value_difference() * 2 + mut.get_value_difference() + repo.get_value_difference()) - total);
|
||||
#endif
|
||||
BLT_TRACE("----------------------------------------------");
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
BLT_TRACE("Calls Crossover: {}, Mutation {}, Reproduction {}; {}", cross.get_call_difference(), mut.get_call_difference(), repo.get_call_difference(), total);
|
||||
BLT_TRACE("Value Crossover: {}, Mutation {}, Reproduction {}; {}", cross.get_value_difference(), mut.get_value_difference(), repo.get_value_difference(), (cross.get_value_difference() * 2 + mut.get_value_difference() + repo.get_value_difference()) - total);
|
||||
#endif
|
||||
BLT_TRACE("----------------------------------------------");
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
auto get_and_print_best()
|
||||
{
|
||||
const auto best = program.get_best_individuals<3>();
|
||||
auto get_and_print_best()
|
||||
{
|
||||
const auto best = program.get_best_individuals<3>();
|
||||
|
||||
BLT_INFO("Best approximations:");
|
||||
for (auto& i_ref : best)
|
||||
{
|
||||
auto& i = i_ref.get();
|
||||
BLT_DEBUG("Fitness: %lf, stand: %lf, raw: %lf", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness);
|
||||
i.tree.print(std::cout);
|
||||
std::cout << "\n";
|
||||
}
|
||||
BLT_INFO("Best approximations:");
|
||||
for (auto& i_ref : best)
|
||||
{
|
||||
auto& i = i_ref.get();
|
||||
BLT_DEBUG("Fitness: {:0.6f}, stand: {:0.6f}, raw: {:0.6f}", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness);
|
||||
i.tree.print(std::cout);
|
||||
std::cout << "\n";
|
||||
}
|
||||
|
||||
return best;
|
||||
}
|
||||
return best;
|
||||
}
|
||||
|
||||
void print_stats() const
|
||||
{
|
||||
// TODO: make stats helper
|
||||
const auto& stats = program.get_population_stats();
|
||||
BLT_INFO("Stats:");
|
||||
BLT_INFO("Average fitness: %lf", stats.average_fitness.load());
|
||||
BLT_INFO("Best fitness: %lf", stats.best_fitness.load());
|
||||
BLT_INFO("Worst fitness: %lf", stats.worst_fitness.load());
|
||||
BLT_INFO("Overall fitness: %lf", stats.overall_fitness.load());
|
||||
}
|
||||
void print_stats() const
|
||||
{
|
||||
// TODO: make stats helper
|
||||
const auto& stats = program.get_population_stats();
|
||||
BLT_INFO("Stats:");
|
||||
BLT_INFO("Average fitness: %lf", stats.average_fitness.load());
|
||||
BLT_INFO("Best fitness: %lf", stats.best_fitness.load());
|
||||
BLT_INFO("Worst fitness: %lf", stats.worst_fitness.load());
|
||||
BLT_INFO("Overall fitness: %lf", stats.overall_fitness.load());
|
||||
}
|
||||
|
||||
void execute()
|
||||
{
|
||||
setup_operations();
|
||||
void execute()
|
||||
{
|
||||
setup_operations();
|
||||
|
||||
generate_initial_population();
|
||||
generate_initial_population();
|
||||
|
||||
run_generation_loop();
|
||||
run_generation_loop();
|
||||
|
||||
get_and_print_best();
|
||||
get_and_print_best();
|
||||
|
||||
print_stats();
|
||||
}
|
||||
print_stats();
|
||||
}
|
||||
|
||||
[[nodiscard]] const auto& get_training_cases() const
|
||||
{
|
||||
return training_cases;
|
||||
}
|
||||
[[nodiscard]] const auto& get_training_cases() const
|
||||
{
|
||||
return training_cases;
|
||||
}
|
||||
|
||||
private:
|
||||
std::array<context, 200> training_cases{};
|
||||
};
|
||||
private:
|
||||
std::array<context, 200> training_cases{};
|
||||
};
|
||||
}
|
||||
|
||||
#endif //BLT_GP_EXAMPLE_SYMBOLIC_REGRESSION_H
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -26,36 +26,36 @@ namespace blt::gp
|
|||
static advanced_mutation_t s_mutator;
|
||||
static crossover_t s_crossover;
|
||||
static ramped_half_initializer_t s_init;
|
||||
|
||||
|
||||
prog_config_t::prog_config_t(): mutator(s_mutator), crossover(s_crossover), pop_initializer(s_init)
|
||||
{
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
prog_config_t::prog_config_t(const std::reference_wrapper<population_initializer_t>& popInitializer):
|
||||
mutator(s_mutator), crossover(s_crossover), pop_initializer(popInitializer)
|
||||
{}
|
||||
|
||||
|
||||
prog_config_t::prog_config_t(size_t populationSize, const std::reference_wrapper<population_initializer_t>& popInitializer):
|
||||
population_size(populationSize), mutator(s_mutator), crossover(s_crossover), pop_initializer(popInitializer)
|
||||
{}
|
||||
|
||||
|
||||
prog_config_t::prog_config_t(size_t populationSize):
|
||||
population_size(populationSize), mutator(s_mutator), crossover(s_crossover), pop_initializer(s_init)
|
||||
{}
|
||||
|
||||
|
||||
random_t& gp_program::get_random() const
|
||||
{
|
||||
thread_local static blt::gp::random_t random_engine{seed_func()};
|
||||
return random_engine;
|
||||
}
|
||||
|
||||
|
||||
stack_allocator::Allocator& stack_allocator::get_allocator()
|
||||
{
|
||||
static Allocator allocator;
|
||||
return allocator;
|
||||
}
|
||||
|
||||
|
||||
void gp_program::create_threads()
|
||||
{
|
||||
#ifdef BLT_TRACK_ALLOCATIONS
|
||||
|
|
Loading…
Reference in New Issue