rework fitness
parent
ef46bc3189
commit
d6ebcd935c
|
@ -1,5 +1,5 @@
|
|||
cmake_minimum_required(VERSION 3.25)
|
||||
project(blt-gp VERSION 0.0.58)
|
||||
project(blt-gp VERSION 0.0.59)
|
||||
|
||||
include(CTest)
|
||||
|
||||
|
@ -79,5 +79,6 @@ if (${BUILD_EXAMPLES})
|
|||
blt_add_example(blt-gp5 examples/gp_test_5.cpp)
|
||||
blt_add_example(blt-gp6 examples/gp_test_6.cpp)
|
||||
blt_add_example(blt-gp7 examples/gp_test_7.cpp)
|
||||
blt_add_example(blt-symbolic-regression examples/gp_symbolic_regression_example.cpp)
|
||||
|
||||
endif ()
|
|
@ -0,0 +1,130 @@
|
|||
/*
|
||||
* <Short Description>
|
||||
* Copyright (C) 2024 Brett Terpstra
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include <blt/gp/program.h>
|
||||
#include <blt/gp/tree.h>
|
||||
#include <blt/std/logging.h>
|
||||
#include <iostream>
|
||||
|
||||
static constexpr long SEED = 41912;
|
||||
|
||||
struct context
|
||||
{
|
||||
float x, y;
|
||||
};
|
||||
|
||||
std::array<context, 200> fitness_cases;
|
||||
|
||||
blt::gp::prog_config_t config = blt::gp::prog_config_t()
|
||||
.set_initial_min_tree_size(2)
|
||||
.set_initial_max_tree_size(6)
|
||||
.set_elite_count(0)
|
||||
.set_max_generations(50)
|
||||
.set_pop_size(500);
|
||||
|
||||
blt::gp::type_provider type_system;
|
||||
blt::gp::gp_program program(type_system, blt::gp::random_t{SEED}, config); // NOLINT
|
||||
|
||||
blt::gp::operation_t add([](float a, float b) { return a + b; }, "add");
|
||||
blt::gp::operation_t sub([](float a, float b) { return a - b; }, "sub");
|
||||
blt::gp::operation_t mul([](float a, float b) { return a * b; }, "mul");
|
||||
blt::gp::operation_t pro_div([](float a, float b) { return b == 0.0f ? 1.0f : a / b; }, "div");
|
||||
blt::gp::operation_t op_sin([](float a) { return std::sin(a); }, "sin");
|
||||
blt::gp::operation_t op_cos([](float a) { return std::cos(a); }, "cos");
|
||||
blt::gp::operation_t op_exp([](float a) { return std::exp(a); }, "exp");
|
||||
blt::gp::operation_t op_log([](float a) { return a == 0.0f ? 0.0f : std::log(a); }, "log");
|
||||
|
||||
blt::gp::operation_t lit([]() {
|
||||
return program.get_random().get_float(-320.0f, 320.0f);
|
||||
}, "lit");
|
||||
blt::gp::operation_t op_x([](const context& context) {
|
||||
return context.x;
|
||||
}, "x");
|
||||
|
||||
constexpr auto fitness_function = [](blt::gp::tree_t& current_tree, blt::gp::fitness_t& fitness, blt::size_t index) {
|
||||
constexpr double value_cutoff = 1.e15;
|
||||
for (auto& fitness_case : fitness_cases)
|
||||
{
|
||||
auto diff = std::abs(fitness_case.y - current_tree.get_evaluation_value<float>(&fitness_case));
|
||||
if (diff < value_cutoff)
|
||||
{
|
||||
fitness.raw_fitness += diff;
|
||||
if (diff < 0.01)
|
||||
fitness.hits++;
|
||||
} else
|
||||
fitness.raw_fitness += value_cutoff;
|
||||
}
|
||||
fitness.standardized_fitness = fitness.raw_fitness;
|
||||
fitness.adjusted_fitness = 1.0 / (1.0 + fitness.standardized_fitness);
|
||||
//BLT_TRACE("fitness: %lf raw: %lf", fitness.adjusted_fitness, fitness.raw_fitness);
|
||||
};
|
||||
|
||||
float example_function(float x)
|
||||
{
|
||||
return x * x * x * x + x * x * x + x * x + x;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
for (auto& fitness_case : fitness_cases)
|
||||
{
|
||||
constexpr float range = 10;
|
||||
constexpr float half_range = range / 2.0;
|
||||
auto x = program.get_random().get_float(-half_range, half_range);
|
||||
auto y = example_function(x);
|
||||
fitness_case = {x, y};
|
||||
}
|
||||
|
||||
type_system.register_type<float>();
|
||||
|
||||
blt::gp::operator_builder<context> builder{type_system};
|
||||
builder.add_operator(add);
|
||||
builder.add_operator(sub);
|
||||
builder.add_operator(mul);
|
||||
builder.add_operator(pro_div);
|
||||
builder.add_operator(op_sin);
|
||||
builder.add_operator(op_cos);
|
||||
builder.add_operator(op_exp);
|
||||
builder.add_operator(op_log);
|
||||
|
||||
builder.add_operator(lit, true);
|
||||
builder.add_operator(op_x);
|
||||
|
||||
program.set_operations(builder.build());
|
||||
|
||||
program.generate_population(type_system.get_type<float>().id(), fitness_function);
|
||||
|
||||
while (!program.should_terminate())
|
||||
{
|
||||
program.create_next_generation(blt::gp::select_fitness_proportionate_t{}, blt::gp::select_fitness_proportionate_t{}, blt::gp::select_fitness_proportionate_t{});
|
||||
program.next_generation();
|
||||
program.evaluate_fitness();
|
||||
}
|
||||
|
||||
auto best = program.get_best_individuals<3>();
|
||||
|
||||
BLT_INFO("Best approximations:");
|
||||
for (auto& i_ref : best)
|
||||
{
|
||||
auto& i = i_ref.get();
|
||||
BLT_DEBUG("Fitness: %lf, stand: %lf, raw: %lf", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness);
|
||||
i.tree.print(program, std::cout);
|
||||
std::cout << "\n";
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -16,14 +16,12 @@
|
|||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include <blt/gp/program.h>
|
||||
#include <blt/gp/generators.h>
|
||||
#include <blt/gp/tree.h>
|
||||
#include <blt/std/logging.h>
|
||||
#include <blt/gp/transformers.h>
|
||||
|
||||
static constexpr long SEED = 41912;
|
||||
|
||||
blt::gp::prog_config_t config = blt::gp::prog_config_t().set_elite_count(1);
|
||||
blt::gp::prog_config_t config = blt::gp::prog_config_t().set_elite_count(2);
|
||||
|
||||
blt::gp::type_provider type_system;
|
||||
blt::gp::gp_program program(type_system, blt::gp::random_t{SEED}, config); // NOLINT
|
||||
|
@ -72,6 +70,17 @@ void print_best()
|
|||
//BLT_TRACE(small);
|
||||
}
|
||||
|
||||
constexpr auto fitness_function = [](blt::gp::tree_t& current_tree, blt::gp::fitness_t& fitness, blt::size_t index) {
|
||||
/*auto size = current_tree.get_values().size();
|
||||
BLT_DEBUG("(depth: %ld) (blocks: %ld) (size: t: %ld m: %ld u: %ld r: %ld) filled: %f%%",
|
||||
current_tree.get_depth(program), size.blocks, size.total_size_bytes, size.total_no_meta_bytes, size.total_used_bytes,
|
||||
size.total_remaining_bytes, static_cast<double>(size.total_used_bytes) / static_cast<double>(size.total_no_meta_bytes));*/
|
||||
result_container[index] = current_tree.get_evaluation_value<float>(nullptr);
|
||||
fitness.raw_fitness = result_container[index] / 1000000000.0;
|
||||
fitness.standardized_fitness = fitness.raw_fitness;
|
||||
fitness.adjusted_fitness = 1.0 - (1.0 / (1.0 + fitness.raw_fitness));
|
||||
};
|
||||
|
||||
/**
|
||||
* This is a test using multiple types with blt::gp
|
||||
*/
|
||||
|
@ -100,29 +109,16 @@ int main()
|
|||
|
||||
program.set_operations(builder.build());
|
||||
|
||||
program.generate_population(type_system.get_type<float>().id());
|
||||
program.generate_population(type_system.get_type<float>().id(), fitness_function);
|
||||
|
||||
while (!program.should_terminate())
|
||||
{
|
||||
program.evaluate_fitness([](blt::gp::tree_t& current_tree, decltype(result_container)& container, blt::size_t index) {
|
||||
/*auto size = current_tree.get_values().size();
|
||||
BLT_DEBUG("(depth: %ld) (blocks: %ld) (size: t: %ld m: %ld u: %ld r: %ld) filled: %f%%",
|
||||
current_tree.get_depth(program), size.blocks, size.total_size_bytes, size.total_no_meta_bytes, size.total_used_bytes,
|
||||
size.total_remaining_bytes, static_cast<double>(size.total_used_bytes) / static_cast<double>(size.total_no_meta_bytes));*/
|
||||
container[index] = current_tree.get_evaluation_value<float>(nullptr);
|
||||
return container[index] / 1000000000.0;
|
||||
}, result_container);
|
||||
print_best();
|
||||
program.create_next_generation(blt::gp::select_tournament_t{}, blt::gp::select_tournament_t{},
|
||||
blt::gp::select_tournament_t{});
|
||||
program.create_next_generation(blt::gp::select_tournament_t{}, blt::gp::select_tournament_t{}, blt::gp::select_tournament_t{});
|
||||
program.next_generation();
|
||||
program.evaluate_fitness();
|
||||
}
|
||||
|
||||
program.evaluate_fitness([](blt::gp::tree_t& current_tree, decltype(result_container)& container, blt::size_t index) {
|
||||
container[index] = current_tree.get_evaluation_value<float>(nullptr);
|
||||
return container[index] / 1000000000.0;
|
||||
}, result_container);
|
||||
|
||||
print_best();
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -168,11 +168,6 @@ namespace blt::gp
|
|||
};
|
||||
}
|
||||
|
||||
[[nodiscard]] inline constexpr blt::size_t get_argc() const
|
||||
{
|
||||
return sizeof...(Args);
|
||||
}
|
||||
|
||||
[[nodiscard]] inline constexpr std::optional<std::string_view> get_name() const
|
||||
{
|
||||
return name;
|
||||
|
|
|
@ -104,9 +104,6 @@ namespace blt::gp
|
|||
auto return_type_id = system.get_type<Return>().id();
|
||||
auto operator_id = blt::gp::operator_id(storage.operators.size());
|
||||
|
||||
auto& operator_list = op.get_argc() == 0 ? storage.terminals : storage.non_terminals;
|
||||
operator_list[return_type_id].push_back(operator_id);
|
||||
|
||||
operator_info info;
|
||||
|
||||
if constexpr (sizeof...(Args) > 0)
|
||||
|
@ -119,6 +116,9 @@ namespace blt::gp
|
|||
|
||||
((std::is_same_v<detail::remove_cv_ref<Args>, Context> ? info.argc.argc -= 1 : (blt::size_t) nullptr), ...);
|
||||
|
||||
auto& operator_list = info.argc.argc == 0 ? storage.terminals : storage.non_terminals;
|
||||
operator_list[return_type_id].push_back(operator_id);
|
||||
|
||||
BLT_ASSERT(info.argc.argc_context - info.argc.argc <= 1 && "Cannot pass multiple context as arguments!");
|
||||
|
||||
info.function = op.template make_callable<Context>();
|
||||
|
@ -246,15 +246,9 @@ namespace blt::gp
|
|||
system(system), engine(engine), config(config)
|
||||
{}
|
||||
|
||||
void generate_population(type_id root_type)
|
||||
{
|
||||
current_pop = config.pop_initializer.get().generate(
|
||||
{*this, root_type, config.population_size, config.initial_min_tree_size, config.initial_max_tree_size});
|
||||
}
|
||||
|
||||
template<typename Crossover, typename Mutation, typename Reproduction, typename Creation_Func = decltype(default_next_pop_creator<Crossover, Mutation, Reproduction>)>
|
||||
template<typename Crossover, typename Mutation, typename Reproduction, typename CreationFunc = decltype(default_next_pop_creator<Crossover, Mutation, Reproduction>)>
|
||||
void create_next_generation(Crossover&& crossover_selection, Mutation&& mutation_selection, Reproduction&& reproduction_selection,
|
||||
Creation_Func& func = default_next_pop_creator<Crossover, Mutation, Reproduction>)
|
||||
CreationFunc& func = default_next_pop_creator<Crossover, Mutation, Reproduction>)
|
||||
{
|
||||
// should already be empty
|
||||
next_pop.clear();
|
||||
|
@ -266,65 +260,30 @@ namespace blt::gp
|
|||
std::forward<Reproduction>(reproduction_selection));
|
||||
}
|
||||
|
||||
void evaluate_fitness()
|
||||
{
|
||||
evaluate_fitness_func();
|
||||
}
|
||||
|
||||
/**
|
||||
* takes in a lambda for the fitness evaluation function (must return a value convertable to double)
|
||||
* The lambda must accept a tree for evaluation, container for evaluation context, and a index into that container (current tree)
|
||||
* takes in a reference to a function for the fitness evaluation function (must return a value convertable to double)
|
||||
* The lambda must accept a tree for evaluation, and an index (current tree)
|
||||
*
|
||||
* tree_t&, Container&, blt::size_t
|
||||
* tree_t& current_tree, blt::size_t index_of_tree
|
||||
*
|
||||
* Container must be concurrently accessible from multiple threads using operator[]
|
||||
*
|
||||
* NOTE: 0 is considered the best, in terms of standardized and adjusted fitness
|
||||
* NOTE: 0 is considered the best, in terms of standardized fitness
|
||||
*/
|
||||
template<typename Container, typename Callable>
|
||||
void evaluate_fitness(Callable&& fitness_function, Container& result_storage, bool larger_better = true)
|
||||
template<typename FitnessFunc>
|
||||
void generate_population(type_id root_type, FitnessFunc& fitness_function)
|
||||
{
|
||||
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
|
||||
ind.second.raw_fitness = static_cast<double>(fitness_function(ind.second.tree, result_storage, ind.first));
|
||||
double min = 0;
|
||||
double max = 0;
|
||||
for (auto& ind : current_pop.get_individuals())
|
||||
{
|
||||
if (ind.raw_fitness < min)
|
||||
min = ind.raw_fitness;
|
||||
if (ind.raw_fitness > max)
|
||||
max = ind.raw_fitness;
|
||||
}
|
||||
|
||||
double overall_fitness = 0;
|
||||
double best_fitness = 2;
|
||||
double worst_fitness = 0;
|
||||
individual* best = nullptr;
|
||||
individual* worst = nullptr;
|
||||
|
||||
auto diff = -min;
|
||||
for (auto& ind : current_pop.get_individuals())
|
||||
{
|
||||
// make standardized fitness [0, +inf)
|
||||
ind.standardized_fitness = ind.raw_fitness + diff;
|
||||
//BLT_WARN(ind.standardized_fitness);
|
||||
if (larger_better)
|
||||
ind.standardized_fitness = (max + diff) - ind.standardized_fitness;
|
||||
//BLT_WARN(ind.standardized_fitness);
|
||||
//ind.adjusted_fitness = (1.0 / (1.0 + ind.standardized_fitness));
|
||||
|
||||
if (ind.standardized_fitness > worst_fitness)
|
||||
{
|
||||
worst_fitness = ind.standardized_fitness;
|
||||
worst = &ind;
|
||||
}
|
||||
|
||||
if (ind.standardized_fitness < best_fitness)
|
||||
{
|
||||
best_fitness = ind.standardized_fitness;
|
||||
best = &ind;
|
||||
}
|
||||
|
||||
overall_fitness += ind.standardized_fitness / static_cast<double>(config.population_size);
|
||||
}
|
||||
|
||||
current_stats = {overall_fitness, overall_fitness, best_fitness, worst_fitness, best,
|
||||
worst};
|
||||
current_pop = config.pop_initializer.get().generate(
|
||||
{*this, root_type, config.population_size, config.initial_min_tree_size, config.initial_max_tree_size});
|
||||
evaluate_fitness_func = [this, &fitness_function]() {
|
||||
evaluate_fitness_internal(fitness_function);
|
||||
};
|
||||
evaluate_fitness_func();
|
||||
}
|
||||
|
||||
void next_generation()
|
||||
|
@ -347,10 +306,10 @@ namespace blt::gp
|
|||
values.reserve(current_pop.get_individuals().size());
|
||||
|
||||
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
|
||||
values.emplace_back(ind.first, ind.second.standardized_fitness);
|
||||
values.emplace_back(ind.first, ind.second.fitness.adjusted_fitness);
|
||||
|
||||
std::sort(values.begin(), values.end(), [](const auto& a, const auto& b) {
|
||||
return a.second < b.second;
|
||||
return a.second > b.second;
|
||||
});
|
||||
|
||||
for (blt::size_t i = 0; i < size; i++)
|
||||
|
@ -360,9 +319,23 @@ namespace blt::gp
|
|||
}
|
||||
|
||||
template<blt::size_t size>
|
||||
std::array<std::reference_wrapper<tree_t>, size> get_best()
|
||||
auto get_best_trees()
|
||||
{
|
||||
return convert_array(get_best_indexes<size>(), std::make_integer_sequence<blt::size_t, size>());
|
||||
return convert_array<std::array<std::reference_wrapper<tree_t>, size>>(get_best_indexes<size>(),
|
||||
[this](auto&& arr, blt::size_t index) -> tree_t& {
|
||||
return current_pop.get_individuals()[arr[index]].tree;
|
||||
},
|
||||
std::make_integer_sequence<blt::size_t, size>());
|
||||
}
|
||||
|
||||
template<blt::size_t size>
|
||||
auto get_best_individuals()
|
||||
{
|
||||
return convert_array<std::array<std::reference_wrapper<individual>, size>>(get_best_indexes<size>(),
|
||||
[this](auto&& arr, blt::size_t index) -> individual& {
|
||||
return current_pop.get_individuals()[arr[index]];
|
||||
},
|
||||
std::make_integer_sequence<blt::size_t, size>());
|
||||
}
|
||||
|
||||
[[nodiscard]] bool should_terminate() const
|
||||
|
@ -452,16 +425,87 @@ namespace blt::gp
|
|||
random_t engine;
|
||||
prog_config_t config;
|
||||
|
||||
// for convenience, shouldn't decrease performance too much
|
||||
std::function<void()> evaluate_fitness_func;
|
||||
|
||||
inline selector_args get_selector_args()
|
||||
{
|
||||
return {*this, next_pop, current_pop, current_stats, config, engine};
|
||||
}
|
||||
|
||||
template<blt::size_t size, blt::size_t... indexes>
|
||||
inline std::array<std::reference_wrapper<tree_t>, size> convert_array(std::array<blt::size_t, size>&& arr,
|
||||
std::integer_sequence<blt::size_t, indexes...>)
|
||||
template<typename Return, blt::size_t size, typename Accessor, blt::size_t... indexes>
|
||||
inline Return convert_array(std::array<blt::size_t, size>&& arr, Accessor&& accessor,
|
||||
std::integer_sequence<blt::size_t, indexes...>)
|
||||
{
|
||||
return {current_pop.get_individuals()[arr[indexes]].tree...};
|
||||
return Return{accessor(arr, indexes)...};
|
||||
}
|
||||
|
||||
template<typename Callable>
|
||||
void evaluate_fitness_internal(Callable&& fitness_function)
|
||||
{
|
||||
current_stats = {};
|
||||
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
|
||||
{
|
||||
fitness_function(ind.second.tree, ind.second.fitness, ind.first);
|
||||
if (ind.second.fitness.adjusted_fitness > current_stats.best_fitness)
|
||||
{
|
||||
current_stats.best_fitness = ind.second.fitness.adjusted_fitness;
|
||||
current_stats.best_individual = &ind.second;
|
||||
}
|
||||
|
||||
if (ind.second.fitness.adjusted_fitness < current_stats.worst_fitness)
|
||||
{
|
||||
current_stats.worst_fitness = ind.second.fitness.adjusted_fitness;
|
||||
current_stats.worst_individual = &ind.second;
|
||||
}
|
||||
|
||||
current_stats.overall_fitness += ind.second.fitness.adjusted_fitness;
|
||||
}
|
||||
current_stats.average_fitness /= static_cast<double>(config.population_size);
|
||||
// double min = 0;
|
||||
// double max = 0;
|
||||
// for (auto& ind : current_pop.get_individuals())
|
||||
// {
|
||||
// if (ind.raw_fitness < min)
|
||||
// min = ind.raw_fitness;
|
||||
// if (ind.raw_fitness > max)
|
||||
// max = ind.raw_fitness;
|
||||
// }
|
||||
//
|
||||
// double overall_fitness = 0;
|
||||
// double best_fitness = 2;
|
||||
// double worst_fitness = 0;
|
||||
// individual* best = nullptr;
|
||||
// individual* worst = nullptr;
|
||||
//
|
||||
// auto diff = -min;
|
||||
// for (auto& ind : current_pop.get_individuals())
|
||||
// {
|
||||
// // make standardized fitness [0, +inf)
|
||||
// ind.standardized_fitness = ind.raw_fitness + diff;
|
||||
// //BLT_WARN(ind.standardized_fitness);
|
||||
// if (larger_better)
|
||||
// ind.standardized_fitness = (max + diff) - ind.standardized_fitness;
|
||||
// //BLT_WARN(ind.standardized_fitness);
|
||||
// //ind.adjusted_fitness = (1.0 / (1.0 + ind.standardized_fitness));
|
||||
//
|
||||
// if (ind.standardized_fitness > worst_fitness)
|
||||
// {
|
||||
// worst_fitness = ind.standardized_fitness;
|
||||
// worst = &ind;
|
||||
// }
|
||||
//
|
||||
// if (ind.standardized_fitness < best_fitness)
|
||||
// {
|
||||
// best_fitness = ind.standardized_fitness;
|
||||
// best = &ind;
|
||||
// }
|
||||
//
|
||||
// overall_fitness += ind.standardized_fitness / static_cast<double>(config.population_size);
|
||||
// }
|
||||
//
|
||||
// current_stats = {overall_fitness, overall_fitness, best_fitness, worst_fitness, best,
|
||||
// worst};
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -52,14 +52,14 @@ namespace blt::gp
|
|||
std::vector<std::pair<std::size_t, double>> values;
|
||||
|
||||
for (blt::size_t i = 0; i < config.elites; i++)
|
||||
values.emplace_back(i, current_pop.get_individuals()[i].standardized_fitness);
|
||||
values.emplace_back(i, current_pop.get_individuals()[i].fitness.adjusted_fitness);
|
||||
|
||||
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
|
||||
{
|
||||
for (blt::size_t i = 0; i < config.elites; i++)
|
||||
{
|
||||
// BLT_INFO("%lf < %lf? // %lf", ind.second.standardized_fitness, values[i].second, ind.second.raw_fitness);
|
||||
if (ind.second.standardized_fitness < values[i].second)
|
||||
if (ind.second.fitness.adjusted_fitness > values[i].second)
|
||||
{
|
||||
bool doesnt_contain = true;
|
||||
for (blt::size_t j = 0; j < config.elites; j++)
|
||||
|
@ -68,7 +68,7 @@ namespace blt::gp
|
|||
doesnt_contain = false;
|
||||
}
|
||||
if (doesnt_contain)
|
||||
values[i] = {ind.first, ind.second.standardized_fitness};
|
||||
values[i] = {ind.first, ind.second.fitness.adjusted_fitness};
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -185,6 +185,8 @@ namespace blt::gp
|
|||
void pre_process(gp_program& program, population_t& pop, population_stats& stats) final;
|
||||
|
||||
tree_t& select(gp_program& program, population_t& pop, population_stats& stats) final;
|
||||
private:
|
||||
std::vector<double> probabilities;
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -111,13 +111,18 @@ namespace blt::gp
|
|||
blt::gp::stack_allocator values;
|
||||
};
|
||||
|
||||
struct fitness_t
|
||||
{
|
||||
double raw_fitness = 0;
|
||||
double standardized_fitness = 0;
|
||||
double adjusted_fitness = 0;
|
||||
blt::i64 hits = 0;
|
||||
};
|
||||
|
||||
struct individual
|
||||
{
|
||||
tree_t tree;
|
||||
double raw_fitness = 0;
|
||||
double standardized_fitness = 0;
|
||||
//double adjusted_fitness = 0;
|
||||
double probability = 0;
|
||||
fitness_t fitness;
|
||||
|
||||
individual() = default;
|
||||
|
||||
|
@ -140,8 +145,8 @@ namespace blt::gp
|
|||
{
|
||||
double overall_fitness = 0;
|
||||
double average_fitness = 0;
|
||||
double best_fitness = 1;
|
||||
double worst_fitness = 0;
|
||||
double best_fitness = 0;
|
||||
double worst_fitness = 1;
|
||||
// these will never be null unless your pop is not initialized / fitness eval was not called!
|
||||
individual* best_individual = nullptr;
|
||||
individual* worst_individual = nullptr;
|
||||
|
|
2
lib/blt
2
lib/blt
|
@ -1 +1 @@
|
|||
Subproject commit 4de3aeb87c78a13f8e493e48477220084610c076
|
||||
Subproject commit 456eeb12ac416a4ac4b5e72213f5a93fa576607c
|
|
@ -24,13 +24,13 @@ namespace blt::gp
|
|||
tree_t& select_best_t::select(gp_program&, population_t& pop, population_stats&)
|
||||
{
|
||||
auto& first = pop.get_individuals()[0];
|
||||
double best_fitness = first.standardized_fitness;
|
||||
double best_fitness = first.fitness.adjusted_fitness;
|
||||
tree_t* tree = &first.tree;
|
||||
for (auto& ind : pop.get_individuals())
|
||||
{
|
||||
if (ind.standardized_fitness < best_fitness)
|
||||
if (ind.fitness.adjusted_fitness > best_fitness)
|
||||
{
|
||||
best_fitness = ind.standardized_fitness;
|
||||
best_fitness = ind.fitness.adjusted_fitness;
|
||||
tree = &ind.tree;
|
||||
}
|
||||
}
|
||||
|
@ -40,13 +40,13 @@ namespace blt::gp
|
|||
tree_t& select_worst_t::select(gp_program&, population_t& pop, population_stats&)
|
||||
{
|
||||
auto& first = pop.get_individuals()[0];
|
||||
double worst_fitness = first.standardized_fitness;
|
||||
double worst_fitness = first.fitness.adjusted_fitness;
|
||||
tree_t* tree = &first.tree;
|
||||
for (auto& ind : pop.get_individuals())
|
||||
{
|
||||
if (ind.standardized_fitness > worst_fitness)
|
||||
if (ind.fitness.adjusted_fitness < worst_fitness)
|
||||
{
|
||||
worst_fitness = ind.standardized_fitness;
|
||||
worst_fitness = ind.fitness.adjusted_fitness;
|
||||
tree = &ind.tree;
|
||||
}
|
||||
}
|
||||
|
@ -63,13 +63,13 @@ namespace blt::gp
|
|||
|
||||
auto& first = pop.get_individuals()[program.get_random().get_size_t(0ul, pop.get_individuals().size())];
|
||||
individual* ind = &first;
|
||||
double best_guy = first.standardized_fitness;
|
||||
double best_guy = first.fitness.adjusted_fitness;
|
||||
for (blt::size_t i = 0; i < selection_size - 1; i++)
|
||||
{
|
||||
auto& sel = pop.get_individuals()[program.get_random().get_size_t(0ul, pop.get_individuals().size())];
|
||||
if (sel.standardized_fitness < best_guy)
|
||||
if (sel.fitness.adjusted_fitness > best_guy)
|
||||
{
|
||||
best_guy = sel.standardized_fitness;
|
||||
best_guy = sel.fitness.adjusted_fitness;
|
||||
ind = &sel;
|
||||
}
|
||||
}
|
||||
|
@ -82,9 +82,9 @@ namespace blt::gp
|
|||
auto choice = program.get_random().get_double();
|
||||
for (const auto& ind : blt::enumerate(pop))
|
||||
{
|
||||
if (ind.first == pop.get_individuals().size()-1)
|
||||
if (ind.first == 0)
|
||||
return ind.second.tree;
|
||||
if (choice > ind.second.probability && pop.get_individuals()[ind.first+1].probability < choice)
|
||||
if (choice >= probabilities[ind.first] && choice >= probabilities[ind.first - 1])
|
||||
return ind.second.tree;
|
||||
}
|
||||
BLT_WARN("Unable to find individual with fitness proportionate. This should not be a possible code path!");
|
||||
|
@ -94,11 +94,13 @@ namespace blt::gp
|
|||
|
||||
void select_fitness_proportionate_t::pre_process(gp_program&, population_t& pop, population_stats& stats)
|
||||
{
|
||||
probabilities.clear();
|
||||
double sum_of_prob = 0;
|
||||
for (auto& ind : pop)
|
||||
{
|
||||
ind.probability = sum_of_prob + (ind.standardized_fitness / stats.overall_fitness);
|
||||
sum_of_prob += ind.probability;
|
||||
auto prob = (ind.fitness.adjusted_fitness / stats.overall_fitness);
|
||||
probabilities.push_back(sum_of_prob + prob);
|
||||
sum_of_prob += prob;
|
||||
}
|
||||
}
|
||||
}
|
|
@ -107,7 +107,10 @@ namespace blt::gp
|
|||
if (print_literals)
|
||||
{
|
||||
create_indent(out, indent, pretty_print);
|
||||
program.get_print_func(v.id)(out, reversed);
|
||||
if (program.is_static(v.id))
|
||||
program.get_print_func(v.id)(out, reversed);
|
||||
else
|
||||
out << name;
|
||||
out << return_type << end_indent(pretty_print);
|
||||
} else
|
||||
create_indent(out, indent, pretty_print) << name << return_type << end_indent(pretty_print);
|
||||
|
|
Loading…
Reference in New Issue