now both examples are in their own header file

dev-0.2.1
Brett 2024-12-24 01:17:14 -05:00
parent 946ddcc572
commit e1083426fc
9 changed files with 315 additions and 367 deletions

View File

@ -479,26 +479,5 @@
<option name="/Default/CodeInspection/Highlighting/InspectionSeverities/=StringLiteralTypo/@EntryIndexRemoved" />
<option name="/Default/CodeInspection/Highlighting/InspectionSeverities/=CommentTypo/@EntryIndexRemoved" />
<option name="/Default/CodeInspection/Highlighting/InspectionSeverities/=IdentifierTypo/@EntryIndexRemoved" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/@KeyIndexDefined" value="true" type="bool" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=AccessRight/@EntryIndexedValue" value="public" type="string" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=AccessRight/@EntryIndexRemoved" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=GetterAndSetterKind/@EntryIndexedValue" value="Getter" type="string" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=GetterAndSetterKind/@EntryIndexRemoved" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=AcceptParameterKind/@EntryIndexedValue" value="Value and copy into field" type="string" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=AcceptParameterKind/@EntryIndexRemoved" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=ReturnKind/@EntryIndexedValue" value="Value" type="string" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=ReturnKind/@EntryIndexRemoved" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=InlineDefinition/@EntryIndexedValue" value="True" type="string" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=InlineDefinition/@EntryIndexRemoved" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=InsertVirtualSpecifier/@EntryIndexedValue" value="False" type="string" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=InsertVirtualSpecifier/@EntryIndexRemoved" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=UseConstParameterTypes/@EntryIndexedValue" value="True" type="string" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=UseConstParameterTypes/@EntryIndexRemoved" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=AddPrefixesToGetters/@EntryIndexedValue" value="True" type="string" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=AddPrefixesToGetters/@EntryIndexRemoved" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=AddPrefixesToSetters/@EntryIndexedValue" value="True" type="string" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=AddPrefixesToSetters/@EntryIndexRemoved" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=DeclareGettersNodiscard/@EntryIndexedValue" value="True" type="string" />
<option name="/Default/CodeStyle/Generate/=CppGettersAndSetters/Options/=DeclareGettersNodiscard/@EntryIndexRemoved" />
</component>
</project>

View File

@ -27,7 +27,7 @@ macro(compile_options target_name)
sanitizers(${target_name})
endmacro()
project(blt-gp VERSION 0.2.3)
project(blt-gp VERSION 0.2.4)
include(CTest)

View File

@ -49,6 +49,9 @@ namespace blt::gp::example
return *this;
}
gp_program& get_program() { return program; }
const gp_program& get_program() const { return program; }
protected:
gp_program program;
selection_t* crossover_sel = nullptr;

View File

@ -44,95 +44,132 @@ namespace blt::gp::example
rice_type_t type;
};
void make_operators()
{
static operation_t add{[](const float a, const float b) { return a + b; }, "add"};
static operation_t sub([](const float a, const float b) { return a - b; }, "sub");
static operation_t mul([](const float a, const float b) { return a * b; }, "mul");
static operation_t pro_div([](const float a, const float b) { return b == 0.0f ? 1.0f : a / b; }, "div");
static operation_t op_sin([](const float a) { return std::sin(a); }, "sin");
static operation_t op_cos([](const float a) { return std::cos(a); }, "cos");
static operation_t op_exp([](const float a) { return std::exp(a); }, "exp");
static operation_t op_log([](const float a) { return a == 0.0f ? 0.0f : std::log(a); }, "log");
static auto lit = blt::gp::operation_t([]()
{
return program.get_random().get_float(-32000.0f, 32000.0f);
}, "lit").set_ephemeral();
static operation_t op_area([](const rice_record& rice_data)
{
return rice_data.area;
}, "area");
static operation_t op_perimeter([](const rice_record& rice_data)
{
return rice_data.perimeter;
}, "perimeter");
static operation_t op_major_axis_length([](const rice_record& rice_data)
{
return rice_data.major_axis_length;
}, "major_axis_length");
static operation_t op_minor_axis_length([](const rice_record& rice_data)
{
return rice_data.minor_axis_length;
}, "minor_axis_length");
static operation_t op_eccentricity([](const rice_record& rice_data)
{
return rice_data.eccentricity;
}, "eccentricity");
static operation_t op_convex_area([](const rice_record& rice_data)
{
return rice_data.convex_area;
}, "convex_area");
static operation_t op_extent([](const rice_record& rice_data)
{
return rice_data.extent;
}, "extent");
}
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) const
{
for (auto& training_case : training_cases)
{
auto v = current_tree.get_evaluation_value<float>(training_case);
switch (training_case.type)
{
case rice_type_t::Cammeo:
if (v >= 0)
fitness.hits++;
break;
case rice_type_t::Osmancik:
if (v < 0)
fitness.hits++;
break;
}
}
fitness.raw_fitness = static_cast<double>(fitness.hits);
fitness.standardized_fitness = fitness.raw_fitness;
fitness.adjusted_fitness = 1.0 - (1.0 / (1.0 + fitness.standardized_fitness));
return static_cast<size_t>(fitness.hits) == training_cases.size();
}
void load_rice_data(std::string_view rice_file_path);
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) const;
public:
template <typename SEED>
rice_classification_t(SEED&& seed, const prog_config_t& config): example_base_t{std::forward<SEED>(seed), config}
{
BLT_INFO("Starting BLT-GP Rice Classification Example");
fitness_function_ref = [this](const tree_t& t, fitness_t& f, const size_t i)
{
return fitness_function(t, f, i);
};
}
void make_operators();
void load_rice_data(std::string_view rice_file_path);
confusion_matrix_t test_individual(const individual_t& individual) const;
void execute(const std::string_view rice_file_path)
{
load_rice_data(rice_file_path);
make_operators();
generate_initial_population();
run_generation_loop();
evaluate_individuals();
print_best();
print_average();
}
void run_generation_loop()
{
BLT_DEBUG("Begin Generation Loop");
while (!program.should_terminate())
{
BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation());
BLT_TRACE("Creating next generation");
program.create_next_generation();
BLT_TRACE("Move to next generation");
program.next_generation();
BLT_TRACE("Evaluate Fitness");
program.evaluate_fitness();
auto& stats = program.get_population_stats();
BLT_TRACE("Avg Fit: %lf, Best Fit: %lf, Worst Fit: %lf, Overall Fit: %lf",
stats.average_fitness.load(std::memory_order_relaxed), stats.best_fitness.load(std::memory_order_relaxed),
stats.worst_fitness.load(std::memory_order_relaxed), stats.overall_fitness.load(std::memory_order_relaxed));
BLT_TRACE("----------------------------------------------");
std::cout << std::endl;
}
}
void evaluate_individuals()
{
results.clear();
for (auto& i : program.get_current_pop().get_individuals())
results.emplace_back(test_individual(i), &i);
std::sort(results.begin(), results.end(), [](const auto& a, const auto& b)
{
return a.first > b.first;
});
}
void generate_initial_population()
{
BLT_DEBUG("Generate Initial Population");
static auto sel = select_tournament_t{};
if (crossover_sel == nullptr)
crossover_sel = &sel;
if (mutation_sel == nullptr)
mutation_sel = &sel;
if (reproduction_sel == nullptr)
reproduction_sel = &sel;
program.generate_population(program.get_typesystem().get_type<float>().id(), fitness_function_ref, *crossover_sel, *mutation_sel,
*reproduction_sel);
}
void print_best(const size_t amount = 3)
{
BLT_INFO("Best results:");
for (size_t index = 0; index < amount; index++)
{
const auto& record = results[index].first;
const auto& i = *results[index].second;
BLT_INFO("Hits %ld, Total Cases %ld, Percent Hit: %lf", record.get_hits(), record.get_total(), record.get_percent_hit());
std::cout << record.pretty_print() << std::endl;
BLT_DEBUG("Fitness: %lf, stand: %lf, raw: %lf", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness);
i.tree.print(program, std::cout);
std::cout << "\n";
}
}
void print_worst(const size_t amount = 3) const
{
BLT_INFO("Worst Results:");
for (size_t index = 0; index < amount; index++)
{
const auto& record = results[results.size() - 1 - index].first;
const auto& i = *results[results.size() - 1 - index].second;
BLT_INFO("Hits %ld, Total Cases %ld, Percent Hit: %lf", record.get_hits(), record.get_total(), record.get_percent_hit());
std::cout << record.pretty_print() << std::endl;
BLT_DEBUG("Fitness: %lf, stand: %lf, raw: %lf", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness);
std::cout << "\n";
}
}
void print_average()
{
BLT_INFO("Average Results");
confusion_matrix_t avg{};
avg.set_name_a("cammeo");
avg.set_name_b("osmancik");
for (const auto& [matrix, _] : results)
avg += matrix;
avg /= results.size();
BLT_INFO("Hits %ld, Total Cases %ld, Percent Hit: %lf", avg.get_hits(), avg.get_total(), avg.get_percent_hit());
std::cout << avg.pretty_print() << std::endl;
std::cout << "\n";
}
private:
std::vector<rice_record> training_cases;
std::vector<rice_record> testing_cases;
std::vector<std::pair<confusion_matrix_t, individual_t*>> results;
};
}

View File

@ -41,8 +41,109 @@ blt::gp::prog_config_t config = blt::gp::prog_config_t()
.set_pop_size(500)
.set_thread_count(0);
void blt::gp::example::rice_classification_t::load_rice_data(std::string_view rice_file_path)
int main(int argc, const char** argv)
{
blt::arg_parse parser;
parser.addArgument(blt::arg_builder{"-f", "--file"}.setHelp("File for rice data. Should be in .arff format.").setRequired().build());
auto args = parser.parse_args(argc, argv);
if (!args.contains("file"))
{
BLT_WARN("Please provide path to file with -f or --file");
return 1;
}
auto rice_file_path = args.get<std::string>("file");
blt::gp::example::rice_classification_t rice_classification{SEED_FUNC, config};
rice_classification.execute(rice_file_path);
return 0;
}
void blt::gp::example::rice_classification_t::make_operators()
{
BLT_DEBUG("Setup Types and Operators");
static operation_t add{[](const float a, const float b) { return a + b; }, "add"};
static operation_t sub([](const float a, const float b) { return a - b; }, "sub");
static operation_t mul([](const float a, const float b) { return a * b; }, "mul");
static operation_t pro_div([](const float a, const float b) { return b == 0.0f ? 0.0f : a / b; }, "div");
static operation_t op_exp([](const float a) { return std::exp(a); }, "exp");
static operation_t op_log([](const float a) { return a == 0.0f ? 0.0f : std::log(a); }, "log");
static auto lit = operation_t([this]()
{
return program.get_random().get_float(-32000.0f, 32000.0f);
}, "lit").set_ephemeral();
static operation_t op_area([](const rice_record& rice_data)
{
return rice_data.area;
}, "area");
static operation_t op_perimeter([](const rice_record& rice_data)
{
return rice_data.perimeter;
}, "perimeter");
static operation_t op_major_axis_length([](const rice_record& rice_data)
{
return rice_data.major_axis_length;
}, "major_axis_length");
static operation_t op_minor_axis_length([](const rice_record& rice_data)
{
return rice_data.minor_axis_length;
}, "minor_axis_length");
static operation_t op_eccentricity([](const rice_record& rice_data)
{
return rice_data.eccentricity;
}, "eccentricity");
static operation_t op_convex_area([](const rice_record& rice_data)
{
return rice_data.convex_area;
}, "convex_area");
static operation_t op_extent([](const rice_record& rice_data)
{
return rice_data.extent;
}, "extent");
operator_builder<rice_record> builder{};
builder.build(add, sub, mul, pro_div, op_exp, op_log, lit, op_area, op_perimeter, op_major_axis_length,
op_minor_axis_length, op_eccentricity, op_convex_area, op_extent);
program.set_operations(builder.grab());
}
bool blt::gp::example::rice_classification_t::fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) const
{
for (auto& training_case : training_cases)
{
auto v = current_tree.get_evaluation_value<float>(training_case);
switch (training_case.type)
{
case rice_type_t::Cammeo:
if (v >= 0)
fitness.hits++;
break;
case rice_type_t::Osmancik:
if (v < 0)
fitness.hits++;
break;
}
}
fitness.raw_fitness = static_cast<double>(fitness.hits);
fitness.standardized_fitness = fitness.raw_fitness;
fitness.adjusted_fitness = 1.0 - (1.0 / (1.0 + fitness.standardized_fitness));
return static_cast<size_t>(fitness.hits) == training_cases.size();
}
void blt::gp::example::rice_classification_t::load_rice_data(const std::string_view rice_file_path)
{
BLT_DEBUG("Setup Fitness cases");
auto rice_file_data = fs::getLinesFromFile(rice_file_path);
size_t index = 0;
while (!string::contains(rice_file_data[index++], "@DATA"))
@ -50,7 +151,7 @@ void blt::gp::example::rice_classification_t::load_rice_data(std::string_view ri
}
std::vector<rice_record> c;
std::vector<rice_record> o;
for (std::string_view v : iterate(rice_file_data).skip(index))
for (const std::string_view v : iterate(rice_file_data).skip(index))
{
auto data = string::split(v, ',');
rice_record r{
@ -70,11 +171,11 @@ void blt::gp::example::rice_classification_t::load_rice_data(std::string_view ri
size_t total_records = c.size() + o.size();
size_t training_size = std::min(total_records / 3, 1000ul);
for (blt::size_t i = 0; i < training_size; i++)
for (size_t i = 0; i < training_size; i++)
{
auto& random = program.get_random();
auto& vec = random.choice() ? c : o;
auto pos = random.get_i64(0, static_cast<blt::i64>(vec.size()));
auto pos = random.get_i64(0, static_cast<i64>(vec.size()));
training_cases.push_back(vec[pos]);
vec.erase(vec.begin() + pos);
}
@ -84,197 +185,31 @@ void blt::gp::example::rice_classification_t::load_rice_data(std::string_view ri
BLT_INFO("Created training set of size %ld, testing set is of size %ld", training_size, testing_cases.size());
}
struct test_results_t
blt::gp::confusion_matrix_t blt::gp::example::rice_classification_t::test_individual(const individual_t& individual) const
{
blt::size_t cc = 0;
blt::size_t co = 0;
blt::size_t oo = 0;
blt::size_t oc = 0;
blt::size_t hits = 0;
blt::size_t size = 0;
double percent_hit = 0;
test_results_t& operator+=(const test_results_t& a)
{
cc += a.cc;
co += a.co;
oo += a.oo;
oc += a.oc;
hits += a.hits;
size += a.size;
percent_hit += a.percent_hit;
return *this;
}
test_results_t& operator/=(blt::size_t s)
{
cc /= s;
co /= s;
oo /= s;
oc /= s;
hits /= s;
size /= s;
percent_hit /= static_cast<double>(s);
return *this;
}
friend bool operator<(const test_results_t& a, const test_results_t& b)
{
return a.hits < b.hits;
}
friend bool operator>(const test_results_t& a, const test_results_t& b)
{
return a.hits > b.hits;
}
};
test_results_t test_individual(blt::gp::individual_t& i)
{
test_results_t results;
confusion_matrix_t confusion_matrix;
confusion_matrix.set_name_a("cammeo");
confusion_matrix.set_name_b("osmancik");
for (auto& testing_case : testing_cases)
{
auto result = i.tree.get_evaluation_value<float>(testing_case);
const auto result = individual.tree.get_evaluation_value<float>(testing_case);
switch (testing_case.type)
{
case rice_type_t::Cammeo:
if (result >= 0)
results.cc++; // cammeo cammeo
confusion_matrix.is_A_predicted_A(); // cammeo cammeo
else
results.co++; // cammeo osmancik
confusion_matrix.is_A_predicted_B(); // cammeo osmancik
break;
case rice_type_t::Osmancik:
if (result < 0)
results.oo++; // osmancik osmancik
confusion_matrix.is_B_predicted_B(); // osmancik osmancik
else
results.oc++; // osmancik cammeo
confusion_matrix.is_B_predicted_A(); // osmancik cammeo
break;
}
}
results.hits = results.cc + results.oo;
results.size = testing_cases.size();
results.percent_hit = static_cast<double>(results.hits) / static_cast<double>(results.size) * 100;
return results;
}
int main(int argc, const char** argv)
{
blt::arg_parse parser;
parser.addArgument(blt::arg_builder{"-f", "--file"}.setHelp("File for rice data. Should be in .arff format.").setRequired().build());
auto args = parser.parse_args(argc, argv);
if (!args.contains("file"))
{
BLT_WARN("Please provide path to file with -f or --file");
return 1;
}
auto rice_file_path = args.get<std::string>("file");
BLT_INFO("Starting BLT-GP Rice Classification Example");
BLT_START_INTERVAL("Rice Classification", "Main");
BLT_DEBUG("Setup Fitness cases");
load_rice_data(rice_file_path);
BLT_DEBUG("Setup Types and Operators");
blt::gp::operator_builder<rice_record> builder{};
program.set_operations(builder.build(add, sub, mul, pro_div, op_exp, op_log, lit, op_area, op_perimeter, op_major_axis_length,
op_minor_axis_length, op_eccentricity, op_convex_area, op_extent));
BLT_DEBUG("Generate Initial Population");
auto sel = blt::gp::select_tournament_t{};
program.generate_population(program.get_typesystem().get_type<float>().id(), fitness_function, sel, sel, sel);
BLT_DEBUG("Begin Generation Loop");
while (!program.should_terminate())
{
BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation());
BLT_TRACE("Creating next generation");
BLT_START_INTERVAL("Rice Classification", "Gen");
program.create_next_generation();
BLT_END_INTERVAL("Rice Classification", "Gen");
BLT_TRACE("Move to next generation");
BLT_START_INTERVAL("Rice Classification", "Fitness");
program.next_generation();
BLT_TRACE("Evaluate Fitness");
program.evaluate_fitness();
BLT_END_INTERVAL("Rice Classification", "Fitness");
auto& stats = program.get_population_stats();
BLT_TRACE("Stats:");
BLT_TRACE("Average fitness: %lf", stats.average_fitness.load());
BLT_TRACE("Best fitness: %lf", stats.best_fitness.load());
BLT_TRACE("Worst fitness: %lf", stats.worst_fitness.load());
BLT_TRACE("Overall fitness: %lf", stats.overall_fitness.load());
BLT_TRACE("----------------------------------------------");
std::cout << std::endl;
}
BLT_END_INTERVAL("Rice Classification", "Main");
std::vector<std::pair<test_results_t, blt::gp::individual_t*>> results;
for (auto& i : program.get_current_pop().get_individuals())
results.emplace_back(test_individual(i), &i);
std::sort(results.begin(), results.end(), [](const auto& a, const auto& b)
{
return a.first > b.first;
});
BLT_INFO("Best results:");
for (blt::size_t index = 0; index < 3; index++)
{
const auto& record = results[index].first;
const auto& i = *results[index].second;
BLT_INFO("Hits %ld, Total Cases %ld, Percent Hit: %lf", record.hits, record.size, record.percent_hit);
BLT_DEBUG("Cammeo Cammeo: %ld", record.cc);
BLT_DEBUG("Cammeo Osmancik: %ld", record.co);
BLT_DEBUG("Osmancik Osmancik: %ld", record.oo);
BLT_DEBUG("Osmancik Cammeo: %ld", record.oc);
BLT_DEBUG("Fitness: %lf, stand: %lf, raw: %lf", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness);
i.tree.print(program, std::cout);
std::cout << "\n";
}
BLT_INFO("Worst Results:");
for (blt::size_t index = 0; index < 3; index++)
{
const auto& record = results[results.size() - 1 - index].first;
const auto& i = *results[results.size() - 1 - index].second;
BLT_INFO("Hits %ld, Total Cases %ld, Percent Hit: %lf", record.hits, record.size, record.percent_hit);
BLT_DEBUG("Cammeo Cammeo: %ld", record.cc);
BLT_DEBUG("Cammeo Osmancik: %ld", record.co);
BLT_DEBUG("Osmancik Osmancik: %ld", record.oo);
BLT_DEBUG("Osmancik Cammeo: %ld", record.oc);
BLT_DEBUG("Fitness: %lf, stand: %lf, raw: %lf", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness);
std::cout << "\n";
}
BLT_INFO("Average Results");
test_results_t avg{};
for (const auto& v : results)
avg += v.first;
avg /= results.size();
BLT_INFO("Hits %ld, Total Cases %ld, Percent Hit: %lf", avg.hits, avg.size, avg.percent_hit);
BLT_DEBUG("Cammeo Cammeo: %ld", avg.cc);
BLT_DEBUG("Cammeo Osmancik: %ld", avg.co);
BLT_DEBUG("Osmancik Osmancik: %ld", avg.oo);
BLT_DEBUG("Osmancik Cammeo: %ld", avg.oc);
std::cout << "\n";
BLT_PRINT_PROFILE("Rice Classification", blt::PRINT_CYCLES | blt::PRINT_THREAD | blt::PRINT_WALL);
#ifdef BLT_TRACK_ALLOCATIONS
BLT_TRACE("Total Allocations: %ld times with a total of %s", blt::gp::tracker.getAllocations(),
blt::byte_convert_t(blt::gp::tracker.getAllocatedBytes()).convert_to_nearest_type().to_pretty_string().c_str());
#endif
return 0;
return confusion_matrix;
}

View File

@ -60,4 +60,50 @@ int main()
regression.execute();
return 0;
}
}
bool blt::gp::example::symbolic_regression_t::fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) const
{
constexpr static double value_cutoff = 1.e15;
for (auto& fitness_case : training_cases)
{
const auto diff = std::abs(fitness_case.y - current_tree.get_evaluation_value<float>(fitness_case));
if (diff < value_cutoff)
{
fitness.raw_fitness += diff;
if (diff <= 0.01)
fitness.hits++;
}
else
fitness.raw_fitness += value_cutoff;
}
fitness.standardized_fitness = fitness.raw_fitness;
fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness));
return static_cast<size_t>(fitness.hits) == training_cases.size();
}
void blt::gp::example::symbolic_regression_t::setup_operations()
{
BLT_DEBUG("Setup Types and Operators");
static operation_t add{[](const float a, const float b) { return a + b; }, "add"};
static operation_t sub([](const float a, const float b) { return a - b; }, "sub");
static operation_t mul([](const float a, const float b) { return a * b; }, "mul");
static operation_t pro_div([](const float a, const float b) { return b == 0.0f ? 0.0f : a / b; }, "div");
static operation_t op_sin([](const float a) { return std::sin(a); }, "sin");
static operation_t op_cos([](const float a) { return std::cos(a); }, "cos");
static operation_t op_exp([](const float a) { return std::exp(a); }, "exp");
static operation_t op_log([](const float a) { return a == 0.0f ? 0.0f : std::log(a); }, "log");
static auto lit = operation_t([this]()
{
return program.get_random().get_float(-1.0f, 1.0f);
}, "lit").set_ephemeral();
static operation_t op_x([](const context& context)
{
return context.x;
}, "x");
operator_builder<context> builder{};
builder.build(add, sub, mul, pro_div, op_sin, op_cos, op_exp, op_log, lit, op_x);
program.set_operations(builder.grab());
}

View File

@ -35,25 +35,7 @@ namespace blt::gp::example
};
private:
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) const
{
constexpr static double value_cutoff = 1.e15;
for (auto& fitness_case : training_cases)
{
const auto diff = std::abs(fitness_case.y - current_tree.get_evaluation_value<float>(fitness_case));
if (diff < value_cutoff)
{
fitness.raw_fitness += diff;
if (diff <= 0.01)
fitness.hits++;
}
else
fitness.raw_fitness += value_cutoff;
}
fitness.standardized_fitness = fitness.raw_fitness;
fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness));
return static_cast<size_t>(fitness.hits) == training_cases.size();
}
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) const;
static float example_function(const float x)
{
@ -61,7 +43,7 @@ namespace blt::gp::example
}
public:
template<typename SEED>
template <typename SEED>
symbolic_regression_t(SEED seed, const prog_config_t& config): example_base_t{std::forward<SEED>(seed), config}
{
BLT_INFO("Starting BLT-GP Symbolic Regression Example");
@ -81,37 +63,7 @@ namespace blt::gp::example
};
}
template <typename Ctx>
auto make_operations(operator_builder<Ctx>& builder)
{
static operation_t add{[](const float a, const float b) { return a + b; }, "add"};
static operation_t sub([](const float a, const float b) { return a - b; }, "sub");
static operation_t mul([](const float a, const float b) { return a * b; }, "mul");
static operation_t pro_div([](const float a, const float b) { return b == 0.0f ? 1.0f : a / b; }, "div");
static operation_t op_sin([](const float a) { return std::sin(a); }, "sin");
static operation_t op_cos([](const float a) { return std::cos(a); }, "cos");
static operation_t op_exp([](const float a) { return std::exp(a); }, "exp");
static operation_t op_log([](const float a) { return a == 0.0f ? 0.0f : std::log(a); }, "log");
static auto lit = operation_t([this]()
{
return program.get_random().get_float(-1.0f, 1.0f);
}, "lit").set_ephemeral();
static operation_t op_x([](const context& context)
{
return context.x;
}, "x");
return builder.build(add, sub, mul, pro_div, op_sin, op_cos, op_exp, op_log, lit, op_x);
}
void setup_operations()
{
BLT_DEBUG("Setup Types and Operators");
operator_builder<context> builder{};
make_operations(builder);
program.set_operations(builder.grab());
}
void setup_operations();
void generate_initial_population()
{

View File

@ -86,6 +86,26 @@ namespace blt::gp
return is_B_pred_A;
}
[[nodiscard]] u64 get_hits() const
{
return is_A_pred_A + is_B_pred_B;
}
[[nodiscard]] u64 get_misses() const
{
return is_B_pred_A + is_A_pred_B;
}
[[nodiscard]] u64 get_total() const
{
return get_hits() + get_misses();
}
[[nodiscard]] double get_percent_hit() const
{
return static_cast<double>(get_hits()) / static_cast<double>(get_total());
}
confusion_matrix_t& operator+=(const confusion_matrix_t& op)
{
is_A_pred_A += op.is_A_pred_A;
@ -118,6 +138,16 @@ namespace blt::gp
return result;
}
friend bool operator<(const confusion_matrix_t& a, const confusion_matrix_t& b)
{
return a.get_percent_hit() < b.get_percent_hit();
}
friend bool operator>(const confusion_matrix_t& a, const confusion_matrix_t& b)
{
return a.get_percent_hit() > b.get_percent_hit();
}
[[nodiscard]] std::string pretty_print(const std::string& table_name = "Confusion Matrix") const;
private:
@ -129,40 +159,6 @@ namespace blt::gp
std::string name_B = "B";
};
struct classifier_results_t : public confusion_matrix_t
{
public:
[[nodiscard]] u64 get_hits() const
{
return hits;
}
[[nodiscard]] u64 get_size() const
{
return size;
}
[[nodiscard]] double get_percent_hit() const
{
return static_cast<double>(hits) / static_cast<double>(hits + misses);
}
void hit()
{
++hits;
}
void miss()
{
++misses;
}
private:
u64 hits = 0;
u64 misses = 0;
};
struct population_stats
{
population_stats() = default;

View File

@ -26,18 +26,18 @@ namespace blt::gp {
string::TableFormatter formatter{table_name};
formatter.addColumn("Predicted " + name_A);
formatter.addColumn("Predicted " + name_B);
formatter.addColumn("");
formatter.addColumn("Actual Class");
string::TableRow row;
row.rowValues.push_back(std::to_string(is_A_pred_A));
row.rowValues.push_back(std::to_string(is_A_pred_B));
row.rowValues.push_back("Actual" + name_A);
row.rowValues.push_back(name_A);
formatter.addRow(row);
string::TableRow row2;
row2.rowValues.push_back(std::to_string(is_B_pred_A));
row2.rowValues.push_back(std::to_string(is_B_pred_B));
row2.rowValues.push_back("Actual" + name_B);
row2.rowValues.push_back(name_B);
formatter.addRow(row2);
auto tbl = formatter.createTable(true, true);