Compare commits

..

10 Commits

Author SHA1 Message Date
Brett 76de033fe8 malloc is taking a good amount 2024-08-18 03:32:42 -04:00
Brett 858a7f5cfe works 2024-08-18 02:08:48 -04:00
Brett 7c3b8c050b silly 2024-08-18 01:28:23 -04:00
Brett a8b81bc7a6 test on single thread 2024-08-17 20:07:18 -04:00
Brett 58b3ed02c3 threading on the next generation function + working on debug 2024-08-17 19:52:52 -04:00
Brett 18ef85c1ce what 2024-08-17 04:35:44 -04:00
Brett 1b83d6b4a8 need to add threading next! 2024-08-17 02:20:32 -04:00
Brett 3dd3e6fc9e stack works. test now 2024-08-17 01:59:13 -04:00
Brett 96f9ded1c5 stack is still broken 2024-08-17 00:06:28 -04:00
Brett ac3bc8d10b i am making a new stack! 2024-08-16 21:27:33 -04:00
10 changed files with 536 additions and 805 deletions

View File

@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.25)
project(blt-gp VERSION 0.0.145)
project(blt-gp VERSION 0.1.9)
include(CTest)

41
dev_branch.txt Normal file
View File

@ -0,0 +1,41 @@
Performance counter stats for './cmake-build-release/blt-symbolic-regression-example' (30 runs):
24,277,728,279 branches ( +- 19.01% ) (20.47%)
76,457,616 branch-misses # 0.31% of all branches ( +- 17.97% ) (21.41%)
14,213,192 cache-misses # 4.73% of all cache refs ( +- 14.24% ) (22.52%)
300,581,049 cache-references ( +- 21.08% ) (23.68%)
48,914,779,668 cycles ( +- 19.65% ) (24.80%)
123,068,193,359 instructions # 2.52 insn per cycle ( +- 19.44% ) (25.09%)
0 alignment-faults
4,202 cgroup-switches ( +- 13.56% )
115,962 faults ( +- 10.95% )
871,101,993 ns duration_time ( +- 13.40% )
11,507,605,674 ns user_time ( +- 3.56% )
299,016,204 ns system_time ( +- 3.32% )
41,446,831,795 L1-dcache-loads ( +- 19.28% ) (24.69%)
167,603,194 L1-dcache-load-misses # 0.40% of all L1-dcache accesses ( +- 22.47% ) (23.95%)
81,992,073 L1-dcache-prefetches ( +- 25.34% ) (23.24%)
350,398,072 L1-icache-loads ( +- 15.30% ) (22.70%)
909,504 L1-icache-load-misses # 0.26% of all L1-icache accesses ( +- 14.46% ) (22.18%)
14,271,381 dTLB-loads ( +- 20.04% ) (21.90%)
1,559,972 dTLB-load-misses # 10.93% of all dTLB cache accesses ( +- 14.74% ) (21.39%)
246,888 iTLB-loads ( +- 21.69% ) (20.54%)
403,152 iTLB-load-misses # 163.29% of all iTLB cache accesses ( +- 13.35% ) (19.94%)
210,585,840 l2_request_g1.all_no_prefetch ( +- 20.07% ) (19.93%)
115,962 page-faults ( +- 10.95% )
115,958 page-faults:u ( +- 10.95% )
3 page-faults:k ( +- 4.54% )
41,209,739,257 L1-dcache-loads ( +- 19.02% ) (19.60%)
181,755,898 L1-dcache-load-misses # 0.44% of all L1-dcache accesses ( +- 20.60% ) (20.01%)
<not supported> LLC-loads
<not supported> LLC-load-misses
425,056,352 L1-icache-loads ( +- 12.27% ) (20.43%)
1,076,486 L1-icache-load-misses # 0.31% of all L1-icache accesses ( +- 10.84% ) (20.98%)
15,418,419 dTLB-loads ( +- 17.74% ) (21.24%)
1,648,473 dTLB-load-misses # 11.55% of all dTLB cache accesses ( +- 13.11% ) (20.94%)
325,141 iTLB-loads ( +- 26.87% ) (20.80%)
459,828 iTLB-load-misses # 186.25% of all iTLB cache accesses ( +- 11.50% ) (20.34%)
94,270,593 L1-dcache-prefetches ( +- 22.82% ) (20.09%)
<not supported> L1-dcache-prefetch-misses
0.871 +- 0.117 seconds time elapsed ( +- 13.40% )

View File

@ -31,6 +31,8 @@ struct context
std::array<context, 200> fitness_cases;
blt::gp::mutation_t mut;
blt::gp::prog_config_t config = blt::gp::prog_config_t()
.set_initial_min_tree_size(2)
.set_initial_max_tree_size(6)
@ -117,15 +119,15 @@ int main()
program.set_operations(builder.build());
BLT_DEBUG("Generate Initial Population");
program.generate_population(type_system.get_type<float>().id(), fitness_function);
auto sel = blt::gp::select_fitness_proportionate_t{};
program.generate_population(type_system.get_type<float>().id(), fitness_function, sel, sel, sel);
BLT_DEBUG("Begin Generation Loop");
while (!program.should_terminate())
{
BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation());
BLT_START_INTERVAL("Symbolic Regression", "Gen");
auto sel = blt::gp::select_fitness_proportionate_t{};
program.create_next_generation(sel, sel, sel);
program.create_next_generation();
BLT_END_INTERVAL("Symbolic Regression", "Gen");
BLT_TRACE("Move to next generation");
BLT_START_INTERVAL("Symbolic Regression", "Fitness");

View File

@ -264,19 +264,12 @@ namespace blt::gp
system(system), seed(seed), config(config)
{ create_threads(); }
template<typename Crossover, typename Mutation, typename Reproduction, typename CreationFunc = decltype(default_next_pop_creator<Crossover, Mutation, Reproduction>)>
void create_next_generation(Crossover&& crossover_selection, Mutation&& mutation_selection, Reproduction&& reproduction_selection,
CreationFunc& func = default_next_pop_creator<Crossover, Mutation, Reproduction>)
void create_next_generation()
{
// should already be empty
next_pop.clear();
crossover_selection.pre_process(*this, current_pop, current_stats);
mutation_selection.pre_process(*this, current_pop, current_stats);
reproduction_selection.pre_process(*this, current_pop, current_stats);
auto args = get_selector_args();
func(args, std::forward<Crossover>(crossover_selection), std::forward<Mutation>(mutation_selection),
std::forward<Reproduction>(reproduction_selection));
thread_helper.next_gen_left.store(config.population_size, std::memory_order_release);
(*thread_execution_service)(0);
}
void evaluate_fitness()
@ -294,8 +287,10 @@ namespace blt::gp
*
* NOTE: 0 is considered the best, in terms of standardized fitness
*/
template<typename FitnessFunc>
void generate_population(type_id root_type, FitnessFunc& fitness_function, bool eval_fitness_now = true)
template<typename FitnessFunc, typename Crossover, typename Mutation, typename Reproduction, typename CreationFunc = decltype(default_next_pop_creator<Crossover, Mutation, Reproduction>)>
void generate_population(type_id root_type, FitnessFunc& fitness_function,
Crossover& crossover_selection, Mutation& mutation_selection, Reproduction& reproduction_selection,
CreationFunc& func = default_next_pop_creator<Crossover, Mutation, Reproduction>, bool eval_fitness_now = true)
{
using LambdaReturn = typename decltype(blt::meta::lambda_helper(fitness_function))::Return;
current_pop = config.pop_initializer.get().generate(
@ -303,83 +298,159 @@ namespace blt::gp
if (config.threads == 1)
{
BLT_INFO("Starting with single thread variant!");
thread_execution_service = new std::function([this, &fitness_function](blt::size_t) {
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
{
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
{
auto result = fitness_function(ind.second.tree, ind.second.fitness, ind.first);
if (result)
fitness_should_exit = true;
} else
{
fitness_function(ind.second.tree, ind.second.fitness, ind.first);
}
if (ind.second.fitness.adjusted_fitness > current_stats.best_fitness)
current_stats.best_fitness = ind.second.fitness.adjusted_fitness;
if (ind.second.fitness.adjusted_fitness < current_stats.worst_fitness)
current_stats.worst_fitness = ind.second.fitness.adjusted_fitness;
current_stats.overall_fitness = current_stats.overall_fitness + ind.second.fitness.adjusted_fitness;
}
});
thread_execution_service = new std::function(
[this, &fitness_function, &crossover_selection, &mutation_selection, &reproduction_selection, &func](blt::size_t) {
if (thread_helper.evaluation_left > 0)
{
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
{
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
{
auto result = fitness_function(ind.second.tree, ind.second.fitness, ind.first);
if (result)
fitness_should_exit = true;
} else
{
fitness_function(ind.second.tree, ind.second.fitness, ind.first);
}
if (ind.second.fitness.adjusted_fitness > current_stats.best_fitness)
current_stats.best_fitness = ind.second.fitness.adjusted_fitness;
if (ind.second.fitness.adjusted_fitness < current_stats.worst_fitness)
current_stats.worst_fitness = ind.second.fitness.adjusted_fitness;
current_stats.overall_fitness = current_stats.overall_fitness + ind.second.fitness.adjusted_fitness;
}
thread_helper.evaluation_left = 0;
}
if (thread_helper.next_gen_left > 0)
{
static thread_local std::vector<tree_t> new_children;
new_children.clear();
auto args = get_selector_args(new_children);
crossover_selection.pre_process(*this, current_pop, current_stats);
mutation_selection.pre_process(*this, current_pop, current_stats);
reproduction_selection.pre_process(*this, current_pop, current_stats);
perform_elitism(args);
while (new_children.size() < config.population_size)
func(args, crossover_selection, mutation_selection, reproduction_selection);
for (auto& i : new_children)
next_pop.get_individuals().emplace_back(std::move(i));
thread_helper.next_gen_left = 0;
}
});
} else
{
BLT_INFO("Starting thread execution service!");
std::scoped_lock lock(thread_helper.thread_function_control);
thread_execution_service = new std::function([this, &fitness_function](blt::size_t) {
thread_helper.barrier.wait();
if (thread_helper.evaluation_left > 0)
{
while (thread_helper.evaluation_left > 0)
{
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.evaluation_left.load(std::memory_order_relaxed);
do
thread_execution_service = new std::function(
[this, &fitness_function, &crossover_selection, &mutation_selection, &reproduction_selection, &func](blt::size_t id) {
thread_helper.barrier.wait();
if (thread_helper.evaluation_left > 0)
{
size = std::min(end, config.evaluation_size);
begin = end - size;
} while (!thread_helper.evaluation_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
for (blt::size_t i = begin; i < end; i++)
{
auto& ind = current_pop.get_individuals()[i];
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
while (thread_helper.evaluation_left > 0)
{
auto result = fitness_function(ind.tree, ind.fitness, i);
if (result)
fitness_should_exit = true;
} else
{
fitness_function(ind.tree, ind.fitness, i);
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.evaluation_left.load(std::memory_order_relaxed);
do
{
size = std::min(end, config.evaluation_size);
begin = end - size;
} while (!thread_helper.evaluation_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
for (blt::size_t i = begin; i < end; i++)
{
auto& ind = current_pop.get_individuals()[i];
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
{
auto result = fitness_function(ind.tree, ind.fitness, i);
if (result)
fitness_should_exit = true;
} else
{
fitness_function(ind.tree, ind.fitness, i);
}
auto old_best = current_stats.best_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness > old_best &&
!current_stats.best_fitness.compare_exchange_weak(old_best, ind.fitness.adjusted_fitness,
std::memory_order_relaxed,
std::memory_order_relaxed));
auto old_worst = current_stats.worst_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness < old_worst &&
!current_stats.worst_fitness.compare_exchange_weak(old_worst, ind.fitness.adjusted_fitness,
std::memory_order_relaxed,
std::memory_order_relaxed));
auto old_overall = current_stats.overall_fitness.load(std::memory_order_relaxed);
while (!current_stats.overall_fitness.compare_exchange_weak(old_overall,
ind.fitness.adjusted_fitness + old_overall,
std::memory_order_relaxed,
std::memory_order_relaxed));
}
}
auto old_best = current_stats.best_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness > old_best &&
!current_stats.best_fitness.compare_exchange_weak(old_best, ind.fitness.adjusted_fitness,
std::memory_order_relaxed, std::memory_order_relaxed));
auto old_worst = current_stats.worst_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness < old_worst &&
!current_stats.worst_fitness.compare_exchange_weak(old_worst, ind.fitness.adjusted_fitness,
std::memory_order_relaxed, std::memory_order_relaxed));
auto old_overall = current_stats.overall_fitness.load(std::memory_order_relaxed);
while (!current_stats.overall_fitness.compare_exchange_weak(old_overall,
ind.fitness.adjusted_fitness + old_overall,
std::memory_order_relaxed,
std::memory_order_relaxed));
}
}
}
thread_helper.barrier.wait();
});
if (thread_helper.next_gen_left > 0)
{
static thread_local std::vector<tree_t> new_children;
new_children.clear();
auto args = get_selector_args(new_children);
if (id == 0)
{
crossover_selection.pre_process(*this, current_pop, current_stats);
if (&crossover_selection != &mutation_selection)
mutation_selection.pre_process(*this, current_pop, current_stats);
if (&crossover_selection != &reproduction_selection)
reproduction_selection.pre_process(*this, current_pop, current_stats);
perform_elitism(args);
for (auto& i : new_children)
next_pop.get_individuals().emplace_back(std::move(i));
thread_helper.next_gen_left -= new_children.size();
new_children.clear();
}
thread_helper.barrier.wait();
while (thread_helper.next_gen_left > 0)
{
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.next_gen_left.load(std::memory_order_relaxed);
do
{
size = std::min(end, config.evaluation_size);
begin = end - size;
} while (!thread_helper.next_gen_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
for (blt::size_t i = begin; i < end; i++)
func(args, crossover_selection, mutation_selection, reproduction_selection);
{
std::scoped_lock lock(thread_helper.thread_generation_lock);
for (auto& i : new_children)
{
if (next_pop.get_individuals().size() < config.population_size)
next_pop.get_individuals().emplace_back(i);
}
}
}
}
thread_helper.barrier.wait();
});
thread_helper.thread_function_condition.notify_all();
}
if (eval_fitness_now)
@ -581,9 +652,11 @@ namespace blt::gp
std::vector<std::unique_ptr<std::thread>> threads;
std::mutex thread_function_control;
std::mutex thread_generation_lock;
std::condition_variable thread_function_condition{};
std::atomic_uint64_t evaluation_left = 0;
std::atomic_uint64_t next_gen_left = 0;
std::atomic_bool lifetime_over = false;
blt::barrier barrier;
@ -595,9 +668,9 @@ namespace blt::gp
// for convenience, shouldn't decrease performance too much
std::atomic<std::function<void(blt::size_t)>*> thread_execution_service = nullptr;
inline selector_args get_selector_args()
inline selector_args get_selector_args(std::vector<tree_t>& next_pop_trees)
{
return {*this, next_pop, current_pop, current_stats, config, get_random()};
return {*this, next_pop_trees, current_pop, current_stats, config, get_random()};
}
template<typename Return, blt::size_t size, typename Accessor, blt::size_t... indexes>
@ -612,8 +685,7 @@ namespace blt::gp
void evaluate_fitness_internal()
{
current_stats.clear();
if (config.threads != 1)
thread_helper.evaluation_left.store(current_pop.get_individuals().size(), std::memory_order_release);
thread_helper.evaluation_left.store(current_pop.get_individuals().size(), std::memory_order_release);
(*thread_execution_service)(0);
current_stats.average_fitness = current_stats.overall_fitness / static_cast<double>(config.population_size);

View File

@ -31,7 +31,7 @@ namespace blt::gp
struct selector_args
{
gp_program& program;
population_t& next_pop;
std::vector<tree_t>& next_pop;
population_t& current_pop;
population_stats& current_stats;
prog_config_t& config;
@ -52,8 +52,6 @@ namespace blt::gp
{
for (blt::size_t i = 0; i < config.elites; i++)
{
// BLT_INFO("%lf >= %lf? // %lf (indexes: %ld %ld)", ind.second.fitness.adjusted_fitness, values[i].second,
// ind.second.fitness.raw_fitness, ind.first, values[i].first);
if (ind.second.fitness.adjusted_fitness >= values[i].second)
{
bool doesnt_contain = true;
@ -70,119 +68,58 @@ namespace blt::gp
}
for (blt::size_t i = 0; i < config.elites; i++)
next_pop.get_individuals().push_back(current_pop.get_individuals()[values[i].first]);
}
};
template<typename Crossover, typename Mutation, typename Reproduction>
constexpr inline auto proportionate_next_pop_creator = [](
const selector_args& args, Crossover crossover_selection, Mutation mutation_selection, Reproduction reproduction_selection) {
auto& [program, next_pop, current_pop, current_stats, config, random] = args;
double total_prob = config.mutation_chance + config.crossover_chance;
double crossover_chance = config.crossover_chance / total_prob;
double mutation_chance = crossover_chance + config.mutation_chance / total_prob;
perform_elitism(args);
while (next_pop.get_individuals().size() < config.population_size)
{
auto type = random.get_double();
if (type > crossover_chance && type < mutation_chance)
{
// crossover
auto& p1 = crossover_selection.select(program, current_pop, current_stats);
auto& p2 = crossover_selection.select(program, current_pop, current_stats);
auto results = config.crossover.get().apply(program, p1, p2);
// if crossover fails, we can check for mutation on these guys. otherwise straight copy them into the next pop
if (results)
{
next_pop.get_individuals().emplace_back(std::move(results->child1));
// annoying check
if (next_pop.get_individuals().size() < config.population_size)
next_pop.get_individuals().emplace_back(std::move(results->child2));
} else
{
if (config.try_mutation_on_crossover_failure && random.choice(config.mutation_chance))
next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p1)));
else
next_pop.get_individuals().push_back(individual{p1});
// annoying check.
if (next_pop.get_individuals().size() < config.population_size)
{
if (config.try_mutation_on_crossover_failure && random.choice(config.mutation_chance))
next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p2)));
else
next_pop.get_individuals().push_back(individual{p2});
}
}
} else if (type > mutation_chance)
{
// mutation
auto& p = mutation_selection.select(program, current_pop, current_stats);
next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p)));
} else
{
// reproduction
auto& p = reproduction_selection.select(program, current_pop, current_stats);
next_pop.get_individuals().push_back(individual{p});
}
next_pop.push_back(current_pop.get_individuals()[values[i].first].tree);
}
};
template<typename Crossover, typename Mutation, typename Reproduction>
constexpr inline auto default_next_pop_creator = [](
const blt::gp::selector_args& args, Crossover crossover_selection, Mutation mutation_selection, Reproduction reproduction_selection) {
blt::gp::selector_args& args, Crossover& crossover_selection, Mutation& mutation_selection, Reproduction& reproduction_selection) {
auto& [program, next_pop, current_pop, current_stats, config, random] = args;
perform_elitism(args);
while (next_pop.get_individuals().size() < config.population_size)
int sel = random.get_i32(0, 3);
switch (sel)
{
int sel = random.get_i32(0, 3);
switch (sel)
{
case 0:
// everyone gets a chance once per loop.
if (random.choice(config.crossover_chance))
case 0:
// everyone gets a chance once per loop.
if (random.choice(config.crossover_chance))
{
// crossover
auto& p1 = crossover_selection.select(program, current_pop, current_stats);
auto& p2 = crossover_selection.select(program, current_pop, current_stats);
auto results = config.crossover.get().apply(program, p1, p2);
// if crossover fails, we can check for mutation on these guys. otherwise straight copy them into the next pop
if (results)
{
// crossover
auto& p1 = crossover_selection.select(program, current_pop, current_stats);
auto& p2 = crossover_selection.select(program, current_pop, current_stats);
auto results = config.crossover.get().apply(program, p1, p2);
// if crossover fails, we can check for mutation on these guys. otherwise straight copy them into the next pop
if (results)
{
next_pop.get_individuals().emplace_back(std::move(results->child1));
// annoying check
if (next_pop.get_individuals().size() < config.population_size)
next_pop.get_individuals().emplace_back(std::move(results->child2));
}
next_pop.push_back(std::move(results->child1));
next_pop.push_back(std::move(results->child2));
}
break;
case 1:
if (random.choice(config.mutation_chance))
{
// mutation
auto& p = mutation_selection.select(program, current_pop, current_stats);
next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p)));
}
break;
case 2:
if (config.reproduction_chance > 0 && random.choice(config.reproduction_chance))
{
// reproduction
auto& p = reproduction_selection.select(program, current_pop, current_stats);
next_pop.get_individuals().push_back(individual{p});
}
break;
default:
BLT_ABORT("This is not possible!");
}
}
break;
case 1:
if (random.choice(config.mutation_chance))
{
// mutation
auto& p = mutation_selection.select(program, current_pop, current_stats);
next_pop.push_back(std::move(config.mutator.get().apply(program, p)));
}
break;
case 2:
if (config.reproduction_chance > 0 && random.choice(config.reproduction_chance))
{
// reproduction
auto& p = reproduction_selection.select(program, current_pop, current_stats);
next_pop.push_back(p);
}
break;
default:
#if BLT_DEBUG_LEVEL > 0
BLT_ABORT("This is not possible!");
#else
BLT_UNREACHABLE;
#endif
}
};

View File

@ -23,6 +23,7 @@
#include <blt/std/assert.h>
#include <blt/std/logging.h>
#include <blt/std/allocator.h>
#include <blt/std/ranges.h>
#include <blt/std/meta.h>
#include <blt/gp/fwdecl.h>
#include <utility>
@ -53,426 +54,18 @@ namespace blt::gp
blt::size_t total_size_bytes = 0;
blt::size_t total_used_bytes = 0;
blt::size_t total_remaining_bytes = 0;
blt::size_t total_no_meta_bytes = 0;
blt::size_t total_dealloc = 0;
blt::size_t total_dealloc_used = 0;
blt::size_t total_dealloc_remaining = 0;
blt::size_t total_dealloc_no_meta = 0;
blt::size_t blocks = 0;
friend std::ostream& operator<<(std::ostream& stream, const size_data_t& data)
{
stream << "[";
stream << data.total_used_bytes << "/";
stream << data.total_size_bytes << "(";
stream << (static_cast<double>(data.total_used_bytes) / static_cast<double>(data.total_size_bytes) * 100) << "%), ";
stream << data.total_used_bytes << "/";
stream << data.total_no_meta_bytes << "(";
stream << (static_cast<double>(data.total_used_bytes) / static_cast<double>(data.total_no_meta_bytes) * 100)
<< "%), (empty space: ";
stream << data.total_remaining_bytes << ") blocks: " << data.blocks << " || unallocated space: ";
stream << data.total_dealloc_used << "/";
stream << data.total_dealloc;
if (static_cast<double>(data.total_dealloc) > 0)
stream << "(" << (static_cast<double>(data.total_dealloc_used) / static_cast<double>(data.total_dealloc) * 100) << "%)";
stream << ", ";
stream << data.total_dealloc_used << "/";
stream << data.total_dealloc_no_meta;
if (data.total_dealloc_no_meta > 0)
stream << "(" << (static_cast<double>(data.total_dealloc_used) / static_cast<double>(data.total_dealloc_no_meta * 100))
<< "%)";
stream << ", (empty space: " << data.total_dealloc_remaining << ")]";
stream << data.total_used_bytes << " / " << data.total_size_bytes;
stream << " ("
<< (data.total_size_bytes != 0 ? (static_cast<double>(data.total_used_bytes) / static_cast<double>(data.total_size_bytes) *
100) : 0) << "%); space left: " << data.total_remaining_bytes << "]";
return stream;
}
};
void insert(stack_allocator stack)
{
if (stack.empty())
return;
// take a copy of the pointer to this stack's blocks
auto old_head = stack.head;
// stack is now empty, we have the last reference to it.
stack.head = nullptr;
// we don't have any nodes to search through or re-point, we can just assign the head
if (head == nullptr)
{
head = old_head;
return;
}
// find the beginning of the stack
auto begin = old_head;
while (begin->metadata.prev != nullptr)
begin = begin->metadata.prev;
// move along blocks with free space, attempt to insert bytes from one stack to another
auto insert = head;
while (insert->metadata.next != nullptr && begin != nullptr)
{
if (begin->used_bytes_in_block() <= insert->remaining_bytes_in_block())
{
std::memcpy(insert->metadata.offset, begin->buffer, begin->used_bytes_in_block());
insert->metadata.offset += begin->used_bytes_in_block();
auto old_begin = begin;
begin = begin->metadata.next;
free_block(old_begin);
}
head = insert;
insert = insert->metadata.next;
}
if (begin == nullptr)
return;
while (insert->metadata.next != nullptr)
insert = insert->metadata.next;
// if here is space left we can move the pointers around
insert->metadata.next = begin;
begin->metadata.prev = insert;
// find where the head is now and set the head to this new point.
auto new_head = begin;
while (new_head->metadata.next != nullptr)
new_head = new_head->metadata.next;
head = new_head;
}
/**
* Bytes must be the number of bytes to move, all types must have alignment accounted for
*/
void copy_from(const stack_allocator& stack, blt::size_t bytes)
{
if (bytes == 0)
return;
if (stack.empty())
{
BLT_WARN("This stack is empty, we will copy no bytes from it!");
return;
}
auto [start_block, bytes_left, start_point] = get_start_from_bytes(stack, bytes);
if (bytes_left > 0)
{
allocate_block_to_head_for_size(bytes_left);
std::memcpy(head->metadata.offset, start_point, bytes_left);
head->metadata.offset += bytes_left;
start_block = start_block->metadata.next;
}
// we now copy whole blocks at a time.
while (start_block != nullptr)
{
allocate_block_to_head_for_size(start_block->used_bytes_in_block());
std::memcpy(head->metadata.offset, start_block->buffer, start_block->used_bytes_in_block());
head->metadata.offset += start_block->used_bytes_in_block();
start_block = start_block->metadata.next;
}
}
void copy_from(blt::u8* data, blt::size_t bytes)
{
if (bytes == 0 || data == nullptr)
return;
allocate_block_to_head_for_size(bytes);
std::memcpy(head->metadata.offset, data, bytes);
head->metadata.offset += bytes;
}
void copy_to(blt::u8* data, blt::size_t bytes) const
{
if (bytes == 0 || data == nullptr)
return;
auto [start_block, bytes_left, start_point] = get_start_from_bytes(*this, bytes);
blt::size_t write_point = 0;
if (bytes_left > 0)
{
std::memcpy(data + write_point, start_point, bytes_left);
write_point += bytes_left;
start_block = start_block->metadata.next;
}
// we now copy whole blocks at a time.
while (start_block != nullptr)
{
std::memcpy(data + write_point, start_block->buffer, start_block->used_bytes_in_block());
write_point += start_block->used_bytes_in_block();
start_block = start_block->metadata.next;
}
}
/**
* Pushes an instance of an object on to the stack
* @tparam T type to push
* @param value universal reference to the object to push
*/
template<typename T>
void push(const T& value)
{
using NO_REF_T = std::remove_cv_t<std::remove_reference_t<T>>;
static_assert(std::is_trivially_copyable_v<NO_REF_T> && "Type must be bitwise copyable!");
static_assert(alignof(NO_REF_T) <= MAX_ALIGNMENT && "Type must not be greater than the max alignment!");
auto ptr = allocate_bytes<NO_REF_T>();
head->metadata.offset = static_cast<blt::u8*>(ptr) + aligned_size<NO_REF_T>();
//new(ptr) NO_REF_T(std::forward<T>(value));
std::memcpy(ptr, &value, sizeof(NO_REF_T));
}
template<typename T>
T pop()
{
using NO_REF_T = std::remove_cv_t<std::remove_reference_t<T>>;
static_assert(std::is_trivially_copyable_v<NO_REF_T> && "Type must be bitwise copyable!");
constexpr static auto TYPE_SIZE = aligned_size<NO_REF_T>();
while (head->used_bytes_in_block() == 0 && move_back());
if (empty())
throw std::runtime_error("Silly boi the stack is empty!");
if (head->used_bytes_in_block() < static_cast<blt::ptrdiff_t>(aligned_size<NO_REF_T>()))
throw std::runtime_error((std::string("Mismatched Types! Not enough space left in block! Bytes: ") += std::to_string(
head->used_bytes_in_block()) += " Size: " + std::to_string(sizeof(NO_REF_T))).c_str());
// make copy
NO_REF_T t = *reinterpret_cast<NO_REF_T*>(head->metadata.offset - TYPE_SIZE);
// call destructor
if constexpr (detail::has_func_drop_v<T>)
call_drop<NO_REF_T>(0, 0, nullptr);
// move offset back
head->metadata.offset -= TYPE_SIZE;
// moving back allows us to allocate with other data, if there is room.
while (head->used_bytes_in_block() == 0 && move_back());
return t;
}
template<typename T>
T& from(blt::size_t bytes)
{
using NO_REF_T = std::remove_cv_t<std::remove_reference_t<T>>;
constexpr static auto TYPE_SIZE = aligned_size<NO_REF_T>();
auto remaining_bytes = static_cast<blt::ptrdiff_t>(bytes + TYPE_SIZE);
block* blk = head;
while (remaining_bytes > 0)
{
if (blk == nullptr)
{
BLT_WARN_STREAM << "Stack state: " << size() << "\n";
BLT_WARN_STREAM << "Requested " << bytes << " bytes which becomes " << (bytes + TYPE_SIZE) << "\n";
throw std::runtime_error("Requested size is beyond the scope of this stack!");
}
auto bytes_available = blk->used_bytes_in_block() - remaining_bytes;
if (bytes_available < 0)
{
remaining_bytes -= blk->used_bytes_in_block();
blk = blk->metadata.prev;
} else
break;
}
if (blk == nullptr)
throw std::runtime_error("Some nonsense is going on. This function already smells");
if (blk->used_bytes_in_block() < static_cast<blt::ptrdiff_t>(TYPE_SIZE))
{
BLT_WARN_STREAM << size() << "\n";
BLT_WARN_STREAM << "Requested " << bytes << " bytes which becomes " << (bytes + TYPE_SIZE) << "\n";
BLT_WARN_STREAM << "Block size: " << blk->storage_size() << "\n";
BLT_ABORT((std::string("Mismatched Types! Not enough space left in block! Bytes: ") += std::to_string(
blk->used_bytes_in_block()) += " Size: " + std::to_string(sizeof(NO_REF_T))).c_str());
}
return *reinterpret_cast<NO_REF_T*>(blk->metadata.offset - remaining_bytes);
}
void pop_bytes(blt::ptrdiff_t bytes)
{
if (bytes == 0)
return;
if (empty())
{
BLT_WARN("Cannot pop %ld bytes", bytes);
BLT_ABORT("Stack is empty, we cannot pop!");
}
while (bytes > 0)
{
if (head == nullptr)
{
BLT_WARN("The head is null, this stack doesn't contain enough data inside to pop %ld bytes!", bytes);
BLT_WARN_STREAM << "Stack State: " << size() << "\n";
BLT_ABORT("Stack doesn't contain enough data to preform a pop!");
}
auto diff = head->used_bytes_in_block() - bytes;
// if there is not enough room left to pop completely off the block, then move to the next previous block
// and pop from it, update the amount of bytes to reflect the amount removed from the current block
if (diff < 0)
{
bytes -= head->used_bytes_in_block();
// reset this head's buffer.
head->metadata.offset = head->buffer;
move_back();
} else
{
// otherwise update the offset pointer
head->metadata.offset -= bytes;
break;
}
}
while (head != nullptr && head->used_bytes_in_block() == 0 && move_back());
}
/**
* Warning this function should be used to transfer types, not arrays of types! It will produce an error if you attempt to pass more
* than one type # of bytes at a time!
* @param to stack to push to
* @param bytes number of bytes to transfer out.
*/
void transfer_bytes(stack_allocator& to, blt::size_t bytes)
{
while (head->used_bytes_in_block() == 0 && move_back());
if (empty())
throw std::runtime_error("This stack is empty!");
auto type_size = aligned_size(bytes);
if (head->used_bytes_in_block() < static_cast<blt::ptrdiff_t>(type_size))
{
BLT_ERROR_STREAM << "Stack State:\n" << size() << "\n" << "Bytes in head: " << bytes_in_head() << "\n";
BLT_ABORT(("This stack doesn't contain enough data for this type! " + std::to_string(head->used_bytes_in_block()) + " / " +
std::to_string(bytes) + " This is an invalid runtime state!").c_str());
}
auto ptr = to.allocate_bytes(type_size);
to.head->metadata.offset = static_cast<blt::u8*>(ptr) + type_size;
std::memcpy(ptr, head->metadata.offset - type_size, type_size);
head->metadata.offset -= type_size;
while (head->used_bytes_in_block() == 0 && move_back());
}
template<typename... Args>
void call_destructors(detail::bitmask_t* mask)
{
if constexpr (sizeof...(Args) > 0) {
blt::size_t offset = (stack_allocator::aligned_size<NO_REF_T<Args>>() + ...) -
stack_allocator::aligned_size<NO_REF_T<typename blt::meta::arg_helper<Args...>::First>>();
blt::size_t index = 0;
if (mask != nullptr)
index = mask->size() - sizeof...(Args);
((call_drop<Args>(offset, index, mask), offset -= stack_allocator::aligned_size<NO_REF_T<Args>>(), ++index), ...);
if (mask != nullptr)
{
auto& mask_r = *mask;
for (blt::size_t i = 0; i < sizeof...(Args); i++)
mask_r.pop_back();
}
}
}
[[nodiscard]] bool empty() const noexcept
{
if (head == nullptr)
return true;
if (head->metadata.prev != nullptr)
return false;
return head->used_bytes_in_block() == 0;
}
[[nodiscard]] blt::ptrdiff_t bytes_in_head() const noexcept
{
if (head == nullptr)
return 0;
return head->used_bytes_in_block();
}
/**
* Warning this function is slow!
* @return the size of the stack allocator in bytes
*/
[[nodiscard]] size_data_t size() const noexcept
{
size_data_t size_data;
auto* prev = head;
while (prev != nullptr)
{
size_data.total_size_bytes += prev->metadata.size;
size_data.total_no_meta_bytes += prev->storage_size();
size_data.total_remaining_bytes += prev->remaining_bytes_in_block();
size_data.total_used_bytes += prev->used_bytes_in_block();
size_data.blocks++;
prev = prev->metadata.prev;
}
if (head != nullptr)
{
auto next = head->metadata.next;
while (next != nullptr)
{
size_data.total_dealloc += next->metadata.size;
size_data.total_dealloc_no_meta += next->storage_size();
size_data.total_dealloc_remaining += next->remaining_bytes_in_block();
size_data.total_dealloc_used += next->used_bytes_in_block();
size_data.blocks++;
next = next->metadata.next;
}
}
return size_data;
}
stack_allocator() = default;
// TODO: cleanup this allocator!
// if you keep track of type size information you can memcpy between stack allocators as you already only allow trivially copyable types
stack_allocator(const stack_allocator& copy) noexcept
{
if (copy.empty())
return;
head = nullptr;
block* list_itr = nullptr;
// start at the beginning of the list
block* current = copy.head;
while (current != nullptr)
{
list_itr = current;
current = current->metadata.prev;
}
// copy all the blocks
while (list_itr != nullptr)
{
push_block(list_itr->metadata.size);
std::memcpy(head->buffer, list_itr->buffer, list_itr->storage_size());
head->metadata.size = list_itr->metadata.size;
head->metadata.offset = head->buffer + list_itr->used_bytes_in_block();
list_itr = list_itr->metadata.next;
}
}
stack_allocator& operator=(const stack_allocator& copy) = delete;
stack_allocator(stack_allocator&& move) noexcept
{
head = move.head;
move.head = nullptr;
}
stack_allocator& operator=(stack_allocator&& move) noexcept
{
move.head = std::exchange(head, move.head);
return *this;
}
~stack_allocator() noexcept
{
if (head != nullptr)
{
auto blk = head->metadata.next;
while (blk != nullptr)
{
auto ptr = blk;
blk = blk->metadata.next;
free_block(ptr);
}
}
free_chain(head);
}
template<typename T>
static inline constexpr blt::size_t aligned_size() noexcept
{
@ -484,83 +77,218 @@ namespace blt::gp
return (size + (MAX_ALIGNMENT - 1)) & ~(MAX_ALIGNMENT - 1);
}
inline static constexpr auto metadata_size() noexcept
stack_allocator() = default;
stack_allocator(const stack_allocator& copy)
{
return sizeof(typename block::block_metadata_t);
if (copy.data_ == nullptr || copy.bytes_stored == 0)
return;
expand(copy.size_);
std::memcpy(data_, copy.data_, copy.bytes_stored);
bytes_stored = copy.bytes_stored;
}
inline static constexpr auto block_size() noexcept
stack_allocator(stack_allocator&& move) noexcept:
data_(std::exchange(move.data_, nullptr)), bytes_stored(move.bytes_stored), size_(move.size_)
{}
stack_allocator& operator=(const stack_allocator& copy) = delete;
stack_allocator& operator=(stack_allocator&& move) noexcept
{
return sizeof(block);
data_ = std::exchange(move.data_, data_);
size_ = std::exchange(move.size_, size_);
bytes_stored = std::exchange(move.bytes_stored, bytes_stored);
return *this;
}
inline static constexpr auto page_size() noexcept
~stack_allocator()
{
return PAGE_SIZE;
std::free(data_);
}
inline static constexpr auto page_size_no_meta() noexcept
void insert(const stack_allocator& stack)
{
return page_size() - metadata_size();
if (stack.empty())
return;
if (size_ < stack.bytes_stored + bytes_stored)
expand(stack.bytes_stored + bytes_stored);
std::memcpy(data_ + bytes_stored, stack.data_, stack.bytes_stored);
bytes_stored += stack.bytes_stored;
}
inline static constexpr auto page_size_no_block() noexcept
void copy_from(const stack_allocator& stack, blt::size_t bytes)
{
return page_size() - block_size();
if (bytes == 0)
return;
if (size_ < bytes + bytes_stored)
expand(bytes + bytes_stored);
std::memcpy(data_ + bytes_stored, stack.data_ + (stack.bytes_stored - bytes), bytes);
bytes_stored += bytes;
}
void copy_from(blt::u8* data, blt::size_t bytes)
{
if (bytes == 0 || data == nullptr)
return;
if (size_ < bytes + bytes_stored)
expand(bytes + bytes_stored);
std::memcpy(data_ + bytes_stored, data, bytes);
bytes_stored += bytes;
}
void copy_to(blt::u8* data, blt::size_t bytes)
{
if (bytes == 0 || data == nullptr)
return;
std::memcpy(data, data_ + (bytes_stored - bytes), bytes);
}
template<typename T, typename NO_REF = NO_REF_T<T>>
void push(const T& t)
{
static_assert(std::is_trivially_copyable_v<NO_REF> && "Type must be bitwise copyable!");
static_assert(alignof(NO_REF) <= MAX_ALIGNMENT && "Type alignment must not be greater than the max alignment!");
auto ptr = allocate_bytes_for_size(sizeof(NO_REF));
std::memcpy(ptr, &t, sizeof(NO_REF));
}
template<typename T, typename NO_REF = NO_REF_T<T>>
T pop()
{
static_assert(std::is_trivially_copyable_v<NO_REF> && "Type must be bitwise copyable!");
static_assert(alignof(NO_REF) <= MAX_ALIGNMENT && "Type alignment must not be greater than the max alignment!");
constexpr auto size = aligned_size(sizeof(NO_REF));
#if BLT_DEBUG_LEVEL > 0
if (bytes_stored < size)
BLT_ABORT("Not enough bytes left to pop!");
#endif
bytes_stored -= size;
return *reinterpret_cast<T*>(data_ + bytes_stored);
}
template<typename T, typename NO_REF = NO_REF_T<T>>
T& from(blt::size_t bytes)
{
static_assert(std::is_trivially_copyable_v<NO_REF> && "Type must be bitwise copyable!");
static_assert(alignof(NO_REF) <= MAX_ALIGNMENT && "Type alignment must not be greater than the max alignment!");
auto size = aligned_size(sizeof(NO_REF)) + bytes;
#if BLT_DEBUG_LEVEL > 0
if (bytes_stored < size)
BLT_ABORT(("Not enough bytes in stack to reference " + std::to_string(size) + " bytes requested but " + std::to_string(bytes) +
" bytes stored!").c_str());
#endif
return *reinterpret_cast<NO_REF*>(data_ + bytes_stored - size);
}
void pop_bytes(blt::size_t bytes)
{
#if BLT_DEBUG_LEVEL > 0
if (bytes_stored < bytes)
BLT_ABORT(("Not enough bytes in stack to pop " + std::to_string(bytes) + " bytes requested but " + std::to_string(bytes) +
" bytes stored!").c_str());
#endif
bytes_stored -= bytes;
}
void transfer_bytes(stack_allocator& to, blt::size_t bytes)
{
#if BLT_DEBUG_LEVEL > 0
if (bytes_stored < bytes)
BLT_ABORT(("Not enough bytes in stack to transfer " + std::to_string(bytes) + " bytes requested but " + std::to_string(bytes) +
" bytes stored!").c_str());
#endif
to.copy_from(*this, aligned_size(bytes));
pop_bytes(bytes);
}
template<typename... Args>
void call_destructors(detail::bitmask_t* mask)
{
if constexpr (sizeof...(Args) > 0)
{
blt::size_t offset = (stack_allocator::aligned_size(sizeof(NO_REF_T<Args>)) + ...) -
stack_allocator::aligned_size(sizeof(NO_REF_T<typename blt::meta::arg_helper<Args...>::First>));
blt::size_t index = 0;
if (mask != nullptr)
index = mask->size() - sizeof...(Args);
((call_drop<Args>(offset, index, mask), offset -= stack_allocator::aligned_size(sizeof(NO_REF_T<Args>)), ++index), ...);
if (mask != nullptr)
{
auto& mask_r = *mask;
for (blt::size_t i = 0; i < sizeof...(Args); i++)
mask_r.pop_back();
}
}
}
[[nodiscard]] bool empty() const noexcept
{
return bytes_stored == 0;
}
[[nodiscard]] blt::ptrdiff_t remaining_bytes_in_block() const noexcept
{
return static_cast<blt::ptrdiff_t>(size_ - bytes_stored);
}
[[nodiscard]] blt::ptrdiff_t bytes_in_head() const noexcept
{
return static_cast<blt::ptrdiff_t>(bytes_stored);
}
[[nodiscard]] size_data_t size() const noexcept
{
size_data_t data;
data.total_used_bytes = bytes_stored;
data.total_size_bytes = size_;
data.total_remaining_bytes = remaining_bytes_in_block();
return data;
}
private:
struct block
void expand(blt::size_t bytes)
{
struct block_metadata_t
{
blt::size_t size = 0;
block* next = nullptr;
block* prev = nullptr;
blt::u8* offset = nullptr;
} metadata;
blt::u8 buffer[8]{};
explicit block(blt::size_t size) noexcept
{
#if BLT_DEBUG_LEVEL > 0
if (size < PAGE_SIZE)
{
BLT_WARN("Hey this block is too small, who allocated it?");
std::abort();
}
#endif
metadata.size = size;
metadata.offset = buffer;
}
void reset() noexcept
{
metadata.offset = buffer;
}
[[nodiscard]] blt::ptrdiff_t storage_size() const noexcept
{
return static_cast<blt::ptrdiff_t>(metadata.size - sizeof(typename block::block_metadata_t));
}
[[nodiscard]] blt::ptrdiff_t used_bytes_in_block() const noexcept
{
return static_cast<blt::ptrdiff_t>(metadata.offset - buffer);
}
[[nodiscard]] blt::ptrdiff_t remaining_bytes_in_block() const noexcept
{
return storage_size() - used_bytes_in_block();
}
};
bytes = to_nearest_page_size(bytes);
auto new_data = static_cast<blt::u8*>(std::malloc(bytes));
if (bytes_stored > 0)
std::memcpy(new_data, data_, bytes_stored);
std::free(data_);
data_ = new_data;
size_ = bytes;
}
struct copy_start_point
static size_t to_nearest_page_size(blt::size_t bytes) noexcept
{
block* start_block;
blt::ptrdiff_t bytes_left;
blt::u8* start_point;
};
constexpr static blt::size_t MASK = ~(PAGE_SIZE - 1);
return (bytes & MASK) + PAGE_SIZE;
}
void* get_aligned_pointer(blt::size_t bytes) noexcept
{
if (data_ == nullptr)
return nullptr;
blt::size_t remaining_bytes = remaining_bytes_in_block();
auto* pointer = static_cast<void*>(data_ + bytes_stored);
return std::align(MAX_ALIGNMENT, bytes, pointer, remaining_bytes);
}
void* allocate_bytes_for_size(blt::size_t bytes)
{
auto aligned_ptr = get_aligned_pointer(bytes);
if (aligned_ptr == nullptr)
{
expand(bytes + MAX_ALIGNMENT);
aligned_ptr = get_aligned_pointer(bytes);
}
if (aligned_ptr == nullptr)
throw std::bad_alloc();
auto used_bytes = aligned_size(bytes);
bytes_stored += used_bytes;
return aligned_ptr;
}
template<typename T>
inline void call_drop(blt::size_t offset, blt::size_t index, detail::bitmask_t* mask)
@ -573,145 +301,14 @@ namespace blt::gp
if (!mask_r[index])
return;
}
from<NO_REF_T<T>>(offset).drop();
from<NO_REF_T<T >>(offset).drop();
}
}
template<typename T>
void* allocate_bytes()
{
return allocate_bytes(sizeof(NO_REF_T<T>));
}
void* allocate_bytes(blt::size_t size)
{
auto ptr = get_aligned_pointer(size);
if (ptr == nullptr)
allocate_block_to_head_for_size(aligned_size(size));
ptr = get_aligned_pointer(size);
if (ptr == nullptr)
throw std::bad_alloc();
return ptr;
}
/**
* Moves forward through the list of "deallocated" blocks, if none meet size requirements it'll allocate a new block.
* This function will take into account the size of the block metadata, but requires the size input to be aligned.
* It will perform no modification to the size value.
*
* The block which allows for size is now at head.
*/
void allocate_block_to_head_for_size(const blt::size_t size) noexcept
{
while (head != nullptr && head->metadata.next != nullptr)
{
head = head->metadata.next;
if (head != nullptr)
head->reset();
if (head->remaining_bytes_in_block() >= static_cast<blt::ptrdiff_t>(size))
break;
}
if (head == nullptr || head->remaining_bytes_in_block() < static_cast<blt::ptrdiff_t>(size))
push_block(size + sizeof(typename block::block_metadata_t));
}
void* get_aligned_pointer(blt::size_t bytes) noexcept
{
if (head == nullptr)
return nullptr;
blt::size_t remaining_bytes = head->remaining_bytes_in_block();
auto* pointer = static_cast<void*>(head->metadata.offset);
return std::align(MAX_ALIGNMENT, bytes, pointer, remaining_bytes);
}
void push_block(blt::size_t size) noexcept
{
auto blk = allocate_block(size);
if (head == nullptr)
{
head = blk;
return;
}
head->metadata.next = blk;
blk->metadata.prev = head;
head = blk;
}
static size_t to_nearest_page_size(blt::size_t bytes) noexcept
{
constexpr static blt::size_t MASK = ~(PAGE_SIZE - 1);
return (bytes & MASK) + PAGE_SIZE;
}
static block* allocate_block(blt::size_t bytes) noexcept
{
auto size = to_nearest_page_size(bytes);
auto* data = std::aligned_alloc(PAGE_SIZE, size);
//auto* data = get_allocator().allocate(size);
new(data) block{size};
return reinterpret_cast<block*>(data);
}
static void free_chain(block* current) noexcept
{
while (current != nullptr)
{
block* ptr = current;
current = current->metadata.prev;
free_block(ptr);
//get_allocator().deallocate(ptr);
}
}
static void free_block(block* ptr) noexcept
{
std::free(ptr);
}
inline bool move_back() noexcept
{
auto old = head;
head = head->metadata.prev;
if (head == nullptr)
{
head = old;
return false;
}
return true;
}
[[nodiscard]] inline static copy_start_point get_start_from_bytes(const stack_allocator& stack, blt::size_t bytes)
{
auto start_block = stack.head;
auto bytes_left = static_cast<blt::ptrdiff_t>(bytes);
blt::u8* start_point = nullptr;
while (bytes_left > 0)
{
if (start_block == nullptr)
{
BLT_WARN("This stack doesn't contain enough space to copy %ld bytes!", bytes);
BLT_WARN_STREAM << "State: " << stack.size() << "\n";
BLT_ABORT("Stack doesn't contain enough data for this copy operation!");
}
if (start_block->used_bytes_in_block() < bytes_left)
{
bytes_left -= start_block->used_bytes_in_block();
start_block = start_block->metadata.prev;
} else if (start_block->used_bytes_in_block() == bytes_left)
{
start_point = start_block->buffer;
break;
} else
{
start_point = start_block->metadata.offset - bytes_left;
break;
}
}
return copy_start_point{start_block, bytes_left, start_point};
}
private:
block* head = nullptr;
blt::u8* data_ = nullptr;
// place in the data_ array which has a free spot.
blt::size_t bytes_stored = 0;
blt::size_t size_ = 0;
};
}

@ -1 +1 @@
Subproject commit 941aa6809c92f05c64ca6624d5898958cfac496d
Subproject commit 97990401e2332276b5397060a3ccaf19f07fb999

41
main_branch.txt Normal file
View File

@ -0,0 +1,41 @@
Performance counter stats for './cmake-build-release/blt-symbolic-regression-example' (30 runs):
81,986,993,284 branches ( +- 15.89% ) (19.93%)
194,632,894 branch-misses # 0.24% of all branches ( +- 21.10% ) (19.84%)
32,561,539 cache-misses # 0.89% of all cache refs ( +- 10.21% ) (19.95%)
3,645,509,810 cache-references ( +- 15.93% ) (20.11%)
169,957,442,648 cycles ( +- 15.85% ) (20.26%)
426,558,894,577 instructions # 2.51 insn per cycle ( +- 16.24% ) (20.29%)
0 alignment-faults
9,103 cgroup-switches ( +- 13.62% )
52,586 faults ( +- 5.74% )
1,823,320,688 ns duration_time ( +- 12.76% )
41,213,439,537 ns user_time ( +- 3.68% )
219,435,124 ns system_time ( +- 2.44% )
132,928,139,347 L1-dcache-loads ( +- 15.55% ) (20.40%)
2,559,138,346 L1-dcache-load-misses # 1.93% of all L1-dcache accesses ( +- 15.53% ) (20.37%)
852,474,938 L1-dcache-prefetches ( +- 19.61% ) (20.44%)
1,035,909,753 L1-icache-loads ( +- 11.73% ) (20.45%)
1,451,589 L1-icache-load-misses # 0.14% of all L1-icache accesses ( +- 13.61% ) (20.50%)
37,722,800 dTLB-loads ( +- 14.93% ) (20.52%)
4,119,243 dTLB-load-misses # 10.92% of all dTLB cache accesses ( +- 10.99% ) (20.55%)
1,318,136 iTLB-loads ( +- 20.32% ) (20.51%)
367,939 iTLB-load-misses # 27.91% of all iTLB cache accesses ( +- 12.34% ) (20.42%)
2,730,214,946 l2_request_g1.all_no_prefetch ( +- 15.32% ) (20.43%)
52,586 page-faults ( +- 5.74% )
52,583 page-faults:u ( +- 5.75% )
3 page-faults:k ( +- 3.96% )
132,786,226,560 L1-dcache-loads ( +- 15.54% ) (20.33%)
2,581,181,694 L1-dcache-load-misses # 1.94% of all L1-dcache accesses ( +- 15.34% ) (20.26%)
<not supported> LLC-loads
<not supported> LLC-load-misses
1,021,814,075 L1-icache-loads ( +- 11.67% ) (20.19%)
1,376,958 L1-icache-load-misses # 0.13% of all L1-icache accesses ( +- 13.76% ) (20.09%)
38,065,494 dTLB-loads ( +- 14.76% ) (20.09%)
4,174,010 dTLB-load-misses # 11.06% of all dTLB cache accesses ( +- 10.90% ) (20.14%)
1,407,386 iTLB-loads ( +- 20.45% ) (20.09%)
338,781 iTLB-load-misses # 25.70% of all iTLB cache accesses ( +- 12.61% ) (20.05%)
873,873,406 L1-dcache-prefetches ( +- 19.41% ) (20.00%)
<not supported> L1-dcache-prefetch-misses
1.823 +- 0.233 seconds time elapsed ( +- 12.76% )

View File

@ -243,7 +243,7 @@ namespace blt::gp
vals_r.pop_bytes(static_cast<blt::ptrdiff_t>(total_bytes_after + accumulate_type_sizes(begin_itr, end_itr)));
// insert the new tree then move back the data from after the original mutation point.
vals_r.insert(std::move(new_vals_r));
vals_r.insert(new_vals_r);
vals_r.copy_from(stack_after_data, total_bytes_after);
auto before = begin_itr - 1;
@ -252,7 +252,7 @@ namespace blt::gp
// this will check to make sure that the tree is in a correct and executable state. it requires that the evaluation is context free!
#if BLT_DEBUG_LEVEL >= 2
BLT_ASSERT(new_vals_r.empty());
// BLT_ASSERT(new_vals_r.empty());
//BLT_ASSERT(stack_after.empty());
blt::size_t bytes_expected = 0;
auto bytes_size = vals_r.size().total_used_bytes;
@ -690,7 +690,7 @@ namespace blt::gp
vals.copy_from(from_ptr, from_bytes);
vals.copy_from(after_ptr, after_to_bytes);
static std::vector<op_container_t> op_copy;
static thread_local std::vector<op_container_t> op_copy;
op_copy.clear();
op_copy.insert(op_copy.begin(), ops.begin() + from_child.start, ops.begin() + from_child.end);

41
thread_branch.txt Normal file
View File

@ -0,0 +1,41 @@
Performance counter stats for './cmake-build-release/blt-symbolic-regression-example' (30 runs):
35,671,860,546 branches ( +- 5.05% ) (20.11%)
130,603,525 branch-misses # 0.37% of all branches ( +- 4.61% ) (20.67%)
43,684,408 cache-misses # 9.61% of all cache refs ( +- 3.08% ) (20.97%)
454,604,804 cache-references ( +- 4.53% ) (21.30%)
72,861,649,501 cycles ( +- 5.33% ) (22.00%)
170,811,735,018 instructions # 2.34 insn per cycle ( +- 5.59% ) (22.84%)
0 alignment-faults
33,002 cgroup-switches ( +- 1.71% )
293,932 faults ( +- 4.09% )
1,130,322,318 ns duration_time ( +- 3.73% )
16,750,942,537 ns user_time ( +- 1.71% )
1,165,192,903 ns system_time ( +- 0.87% )
57,551,179,178 L1-dcache-loads ( +- 5.63% ) (22.36%)
214,283,064 L1-dcache-load-misses # 0.37% of all L1-dcache accesses ( +- 5.58% ) (22.13%)
75,685,527 L1-dcache-prefetches ( +- 7.55% ) (22.07%)
1,115,360,458 L1-icache-loads ( +- 3.91% ) (21.67%)
2,868,754 L1-icache-load-misses # 0.26% of all L1-icache accesses ( +- 3.34% ) (21.34%)
65,107,178 dTLB-loads ( +- 8.94% ) (21.00%)
4,971,480 dTLB-load-misses # 7.64% of all dTLB cache accesses ( +- 3.70% ) (20.90%)
452,351 iTLB-loads ( +- 4.80% ) (20.62%)
1,600,933 iTLB-load-misses # 353.91% of all iTLB cache accesses ( +- 3.68% ) (20.62%)
332,075,460 l2_request_g1.all_no_prefetch ( +- 4.59% ) (20.73%)
293,932 page-faults ( +- 4.09% )
293,928 page-faults:u ( +- 4.09% )
3 page-faults:k ( +- 4.92% )
58,806,652,381 L1-dcache-loads ( +- 5.44% ) (20.61%)
216,591,223 L1-dcache-load-misses # 0.38% of all L1-dcache accesses ( +- 5.39% ) (21.02%)
<not supported> LLC-loads
<not supported> LLC-load-misses
1,059,748,012 L1-icache-loads ( +- 4.29% ) (21.55%)
2,615,017 L1-icache-load-misses # 0.23% of all L1-icache accesses ( +- 3.34% ) (21.85%)
65,917,126 dTLB-loads ( +- 8.89% ) (21.78%)
4,717,351 dTLB-load-misses # 7.25% of all dTLB cache accesses ( +- 3.52% ) (22.05%)
459,796 iTLB-loads ( +- 5.92% ) (21.77%)
1,512,986 iTLB-load-misses # 334.47% of all iTLB cache accesses ( +- 3.64% ) (21.26%)
74,656,433 L1-dcache-prefetches ( +- 7.94% ) (20.50%)
<not supported> L1-dcache-prefetch-misses
1.1303 +- 0.0422 seconds time elapsed ( +- 3.73% )