/* * * Copyright (C) 2025 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "../examples/symbolic_regression.h" #include #include using namespace blt::gp; std::atomic_uint64_t normal_construct = 0; std::atomic_uint64_t ephemeral_construct = 0; std::atomic_uint64_t normal_drop = 0; std::atomic_uint64_t ephemeral_drop = 0; std::atomic_uint64_t max_allocated = 0; struct drop_type { float* m_value; bool ephemeral = false; drop_type() : m_value(new float(0)) { ++normal_construct; } explicit drop_type(const float silly) : m_value(new float(silly)) { ++normal_construct; } explicit drop_type(const float silly, bool) : m_value(new float(silly)), ephemeral(true) { // BLT_TRACE("Constructor with value %f", silly); ++ephemeral_construct; } [[nodiscard]] float value() const { return *m_value; } void drop() const { if (ephemeral) { std::cout << ("Ephemeral drop") << std::endl; ++ephemeral_drop; }else ++normal_drop; delete m_value; } friend std::ostream& operator<<(std::ostream& os, const drop_type& dt) { os << dt.m_value; return os; } }; struct context { float x, y; }; prog_config_t config = prog_config_t() .set_initial_min_tree_size(2) .set_initial_max_tree_size(6) .set_elite_count(2) .set_crossover_chance(0.8) .set_mutation_chance(0.0) .set_reproduction_chance(0.1) .set_max_generations(50) .set_pop_size(500) .set_thread_count(0); example::symbolic_regression_t regression{691ul, config}; operation_t add{[](const drop_type a, const drop_type b) { return drop_type{a.value() + b.value()}; }, "add"}; operation_t sub([](const drop_type a, const drop_type b) { return drop_type{a.value() - b.value()}; }, "sub"); operation_t mul([](const drop_type a, const drop_type b) { return drop_type{a.value() * b.value()}; }, "mul"); operation_t pro_div([](const drop_type a, const drop_type b) { return drop_type{b.value() == 0.0f ? 0.0f : a.value() / b.value()}; }, "div"); operation_t op_sin([](const drop_type a) { return drop_type{std::sin(a.value())}; }, "sin"); operation_t op_cos([](const drop_type a) { return drop_type{std::cos(a.value())}; }, "cos"); operation_t op_exp([](const drop_type a) { return drop_type{std::exp(a.value())}; }, "exp"); operation_t op_log([](const drop_type a) { return drop_type{a.value() <= 0.0f ? 0.0f : std::log(a.value())}; }, "log"); auto lit = operation_t([]() { return drop_type{regression.get_program().get_random().get_float(-1.0f, 1.0f), true}; }, "lit").set_ephemeral(); operation_t op_x([](const context& context) { return drop_type{context.x}; }, "x"); bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t) { if (normal_construct - normal_drop > max_allocated) max_allocated = normal_construct - normal_drop; constexpr static double value_cutoff = 1.e15; for (auto& fitness_case : regression.get_training_cases()) { BLT_GP_UPDATE_CONTEXT(fitness_case); auto val = current_tree.get_evaluation_ref(fitness_case); const auto diff = std::abs(fitness_case.y - val.get().value()); if (diff < value_cutoff) { fitness.raw_fitness += diff; if (diff <= 0.01) fitness.hits++; } else fitness.raw_fitness += value_cutoff; } fitness.standardized_fitness = fitness.raw_fitness; fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness)); return static_cast(fitness.hits) == regression.get_training_cases().size(); } int main() { operator_builder builder{}; builder.build(add, sub, mul, pro_div, op_sin, op_cos, op_exp, op_log, lit, op_x); regression.get_program().set_operations(builder.grab()); auto& program = regression.get_program(); static auto sel = select_tournament_t{}; program.generate_population(program.get_typesystem().get_type().id(), fitness_function, sel, sel, sel); while (!program.should_terminate()) { BLT_TRACE("---------------{Begin Generation %lu}---------------", program.get_current_generation()); BLT_TRACE("Creating next generation"); program.create_next_generation(); BLT_TRACE("Move to next generation"); program.next_generation(); BLT_TRACE("Evaluate Fitness"); program.evaluate_fitness(); } // program.get_best_individuals<1>()[0].get().tree.print(program, std::cout, true, true); regression.get_program().get_current_pop().clear(); regression.get_program().next_generation(); regression.get_program().get_current_pop().clear(); BLT_TRACE("Created %ld times", normal_construct.load()); BLT_TRACE("Dropped %ld times", normal_drop.load()); BLT_TRACE("Ephemeral created %ld times", ephemeral_construct.load()); BLT_TRACE("Ephemeral dropped %ld times", ephemeral_drop.load()); BLT_TRACE("Max allocated %ld times", max_allocated.load()); }