/* * * Copyright (C) 2025 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "../examples/symbolic_regression.h" #include #include #include static const auto SEED_FUNC = [] { return std::random_device()(); }; std::array crossover_chances = {1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0}; std::array mutation_chances = {0.0, 0.1, 0.2, 0.9, 1.0}; std::array reproduction_chances = {0.0, 1.0, 0.1, 0.9}; std::array elite_amounts = {0, 2, 10, 50}; std::array population_sizes = {50, 500, 5000}; blt::gp::prog_config_t best_config; double best_fitness = 0; void run(const blt::gp::prog_config_t& config) { // the config is copied into the gp_system so changing the config will not change the runtime of the program. blt::gp::example::symbolic_regression_t regression{SEED_FUNC, config}; BLT_START_INTERVAL("Symbolic Regression", "Setup Operations"); regression.setup_operations(); BLT_END_INTERVAL("Symbolic Regression", "Setup Operations"); BLT_START_INTERVAL("Symbolic Regression", "Generate Initial Population"); regression.generate_initial_population(); BLT_END_INTERVAL("Symbolic Regression", "Generate Initial Population"); BLT_START_INTERVAL("Symbolic Regression", "Total Generation Loop"); BLT_DEBUG("Begin Generation Loop"); auto& program = regression.get_program(); while (!program.should_terminate()) { #ifdef BLT_TRACK_ALLOCATIONS auto cross = crossover_calls.start_measurement(); auto mut = mutation_calls.start_measurement(); auto repo = reproduction_calls.start_measurement(); #endif BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation()); BLT_TRACE("Creating next generation"); BLT_START_INTERVAL("Symbolic Regression", "Create Next Generation"); program.create_next_generation(); BLT_END_INTERVAL("Symbolic Regression", "Create Next Generation"); BLT_TRACE("Move to next generation"); BLT_START_INTERVAL("Symbolic Regress", "Move Next Generation"); program.next_generation(); BLT_END_INTERVAL("Symbolic Regress", "Move Next Generation"); BLT_TRACE("Evaluate Fitness"); BLT_START_INTERVAL("Symbolic Regress", "Evaluate Fitness"); program.evaluate_fitness(); BLT_END_INTERVAL("Symbolic Regress", "Evaluate Fitness"); BLT_START_INTERVAL("Symbolic Regress", "Fitness Print"); const auto& stats = program.get_population_stats(); BLT_TRACE("Avg Fit: %lf, Best Fit: %lf, Worst Fit: %lf, Overall Fit: %lf", stats.average_fitness.load(std::memory_order_relaxed), stats.best_fitness.load(std::memory_order_relaxed), stats.worst_fitness.load(std::memory_order_relaxed), stats.overall_fitness.load(std::memory_order_relaxed)); BLT_END_INTERVAL("Symbolic Regress", "Fitness Print"); #ifdef BLT_TRACK_ALLOCATIONS crossover_calls.stop_measurement(cross); mutation_calls.stop_measurement(mut); reproduction_calls.stop_measurement(repo); const auto total = (cross.get_call_difference() * 2) + mut.get_call_difference() + repo.get_call_difference(); BLT_TRACE("Calls Crossover: %ld, Mutation %ld, Reproduction %ld; %ld", cross.get_call_difference(), mut.get_call_difference(), repo.get_call_difference(), total); BLT_TRACE("Value Crossover: %ld, Mutation %ld, Reproduction %ld; %ld", cross.get_value_difference(), mut.get_value_difference(), repo.get_value_difference(), (cross.get_value_difference() * 2 + mut.get_value_difference() + repo.get_value_difference()) - total); #endif BLT_TRACE("----------------------------------------------"); std::cout << std::endl; } BLT_END_INTERVAL("Symbolic Regression", "Total Generation Loop"); const auto best = program.get_best_individuals<1>(); if (best[0].get().fitness.adjusted_fitness > best_fitness) { best_fitness = best[0].get().fitness.adjusted_fitness; best_config = config; } } void do_run() { std::stringstream results; for (const auto crossover_chance : crossover_chances) { for (const auto mutation_chance : mutation_chances) { for (const auto reproduction_chance : reproduction_chances) { for (const auto elite_amount : elite_amounts) { for (const auto population_sizes : population_sizes) { blt::gp::prog_config_t config = blt::gp::prog_config_t() .set_initial_min_tree_size(2) .set_initial_max_tree_size(6) .set_elite_count(elite_amount) .set_crossover_chance(crossover_chance) .set_mutation_chance(mutation_chance) .set_reproduction_chance(reproduction_chance) .set_max_generations(50) .set_pop_size(population_sizes) .set_thread_count(0); BLT_INFO_STREAM << "Run: Crossover ("; BLT_INFO_STREAM << crossover_chance; BLT_INFO_STREAM << ") Mutation ("; BLT_INFO_STREAM << mutation_chance; BLT_INFO_STREAM << ") Reproduction ("; BLT_INFO_STREAM << reproduction_chance; BLT_INFO_STREAM << ") Elite ("; BLT_INFO_STREAM << elite_amount; BLT_INFO_STREAM << ") Population Size ("; BLT_INFO_STREAM << population_sizes; BLT_INFO_STREAM << ")" << "\n"; run(config); results << "Run: Crossover ("; results << crossover_chance; results << ") Mutation ("; results << mutation_chance; results << ") Reproduction ("; results << reproduction_chance; results << ") Elite ("; results << elite_amount; results << ") Population Size ("; results << population_sizes; results << ")" << std::endl; BLT_WRITE_PROFILE(results, "Symbolic Regression"); results << std::endl; } } } } } std::cout << results.str() << std::endl; std::cout << "Best Configuration is: " << std::endl; std::cout << "\tCrossover: " << best_config.crossover_chance << std::endl; std::cout << "\tMutation: " << best_config.mutation_chance << std::endl; std::cout << "\tReproduction: " << best_config.reproduction_chance << std::endl; std::cout << "\tElites: " << best_config.elites << std::endl; std::cout << "\tPopulation Size: " << best_config.population_size << std::endl; std::cout << std::endl; } int main() { for (int i = 0; i < 1; i++) do_run(); return 0; }