/* * * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include namespace blt::gp { grow_generator_t grow_generator; inline tree_t& get_static_tree_tl(gp_program& program) { static thread_local tree_t new_tree{program}; new_tree.clear(program); return new_tree; } inline blt::size_t accumulate_type_sizes(detail::op_iter_t begin, detail::op_iter_t end) { blt::size_t total = 0; for (auto it = begin; it != end; ++it) { if (it->is_value) total += stack_allocator::aligned_size(it->type_size); } return total; } template blt::u8* get_thread_pointer_for_size(blt::size_t bytes) { static thread_local blt::expanding_buffer buffer; if (bytes > buffer.size()) buffer.resize(bytes); return buffer.data(); } mutation_t::config_t::config_t(): generator(grow_generator) {} bool crossover_t::apply(gp_program& program, const tree_t& p1, const tree_t& p2, tree_t& c1, tree_t& c2) // NOLINT { auto& c1_ops = c1.get_operations(); auto& c2_ops = c2.get_operations(); if (c1_ops.size() < 5 || c2_ops.size() < 5) return false; auto point = get_crossover_point(program, p1, p2); if (!point) return false; auto crossover_point_begin_itr = c1_ops.begin() + point->p1_crossover_point; auto crossover_point_end_itr = c1_ops.begin() + c1.find_endpoint(program, point->p1_crossover_point); auto found_point_begin_itr = c2_ops.begin() + point->p2_crossover_point; auto found_point_end_itr = c2_ops.begin() + c2.find_endpoint(program, point->p2_crossover_point); stack_allocator& c1_stack = c1.get_values(); stack_allocator& c2_stack = c2.get_values(); // we have to make a copy because we will modify the underlying storage. static thread_local tracked_vector c1_operators; static thread_local tracked_vector c2_operators; c1_operators.clear(); c2_operators.clear(); for (const auto& op : blt::iterate(crossover_point_begin_itr, crossover_point_end_itr)) c1_operators.push_back(op); for (const auto& op : blt::iterate(found_point_begin_itr, found_point_end_itr)) c2_operators.push_back(op); blt::size_t c1_stack_after_bytes = accumulate_type_sizes(crossover_point_end_itr, c1_ops.end()); blt::size_t c1_stack_for_bytes = accumulate_type_sizes(crossover_point_begin_itr, crossover_point_end_itr); blt::size_t c2_stack_after_bytes = accumulate_type_sizes(found_point_end_itr, c2_ops.end()); blt::size_t c2_stack_for_bytes = accumulate_type_sizes(found_point_begin_itr, found_point_end_itr); auto c1_total = static_cast(c1_stack_after_bytes + c1_stack_for_bytes); auto c2_total = static_cast(c2_stack_after_bytes + c2_stack_for_bytes); auto copy_ptr_c1 = get_thread_pointer_for_size(c1_total); auto copy_ptr_c2 = get_thread_pointer_for_size(c2_total); c1_stack.reserve(c1_stack.bytes_in_head() - c1_stack_for_bytes + c2_stack_for_bytes); c2_stack.reserve(c2_stack.bytes_in_head() - c2_stack_for_bytes + c1_stack_for_bytes); c1_stack.copy_to(copy_ptr_c1, c1_total); c1_stack.pop_bytes(c1_total); c2_stack.copy_to(copy_ptr_c2, c2_total); c2_stack.pop_bytes(c2_total); c2_stack.copy_from(copy_ptr_c1, c1_stack_for_bytes); c2_stack.copy_from(copy_ptr_c2 + c2_stack_for_bytes, c2_stack_after_bytes); c1_stack.copy_from(copy_ptr_c2, c2_stack_for_bytes); c1_stack.copy_from(copy_ptr_c1 + c1_stack_for_bytes, c1_stack_after_bytes); // now swap the operators auto insert_point_c1 = crossover_point_begin_itr - 1; auto insert_point_c2 = found_point_begin_itr - 1; // invalidates [begin, end()) so the insert points should be fine c1_ops.erase(crossover_point_begin_itr, crossover_point_end_itr); c2_ops.erase(found_point_begin_itr, found_point_end_itr); c1_ops.insert(++insert_point_c1, c2_operators.begin(), c2_operators.end()); c2_ops.insert(++insert_point_c2, c1_operators.begin(), c1_operators.end()); #if BLT_DEBUG_LEVEL >= 2 blt::size_t c1_found_bytes = c1.get_values().size().total_used_bytes; blt::size_t c2_found_bytes = c2.get_values().size().total_used_bytes; blt::size_t c1_expected_bytes = std::accumulate(result.child1.get_operations().begin(), result.child1.get_operations().end(), 0ul, [](const auto& v1, const auto& v2) { if (v2.is_value) return v1 + stack_allocator::aligned_size(v2.type_size); return v1; }); blt::size_t c2_expected_bytes = std::accumulate(result.child2.get_operations().begin(), result.child2.get_operations().end(), 0ul, [](const auto& v1, const auto& v2) { if (v2.is_value) return v1 + stack_allocator::aligned_size(v2.type_size); return v1; }); if (c1_found_bytes != c1_expected_bytes || c2_found_bytes != c2_expected_bytes) { BLT_WARN("C1 Found bytes %ld vs Expected Bytes %ld", c1_found_bytes, c1_expected_bytes); BLT_WARN("C2 Found bytes %ld vs Expected Bytes %ld", c2_found_bytes, c2_expected_bytes); BLT_ABORT("Amount of bytes in stack doesn't match the number of bytes expected for the operations"); } #endif return true; } std::optional crossover_t::get_crossover_point(gp_program& program, const tree_t& c1, const tree_t& c2) const { auto& c1_ops = c1.get_operations(); auto& c2_ops = c2.get_operations(); blt::size_t crossover_point = program.get_random().get_size_t(1ul, c1_ops.size()); while (config.avoid_terminals && program.get_operator_info(c1_ops[crossover_point].id).argc.is_terminal()) crossover_point = program.get_random().get_size_t(1ul, c1_ops.size()); blt::size_t attempted_point = 0; const auto& crossover_point_type = program.get_operator_info(c1_ops[crossover_point].id); operator_info_t* attempted_point_type = nullptr; blt::size_t counter = 0; do { if (counter >= config.max_crossover_tries) { if (config.should_crossover_try_forward) { bool found = false; for (auto i = attempted_point + 1; i < c2_ops.size(); i++) { auto* info = &program.get_operator_info(c2_ops[i].id); if (info->return_type == crossover_point_type.return_type) { if (config.avoid_terminals && info->argc.is_terminal()) continue; attempted_point = i; attempted_point_type = info; found = true; break; } } if (!found) return {}; } // should we try again over the whole tree? probably not. return {}; } else { attempted_point = program.get_random().get_size_t(1ul, c2_ops.size()); attempted_point_type = &program.get_operator_info(c2_ops[attempted_point].id); if (config.avoid_terminals && attempted_point_type->argc.is_terminal()) continue; if (crossover_point_type.return_type == attempted_point_type->return_type) break; counter++; } } while (true); return crossover_point_t{static_cast(crossover_point), static_cast(attempted_point)}; } bool mutation_t::apply(gp_program& program, const tree_t&, tree_t& c) { mutate_point(program, c, program.get_random().get_size_t(0ul, c.get_operations().size())); return true; } blt::size_t mutation_t::mutate_point(gp_program& program, tree_t& c, blt::size_t node) { auto& ops_r = c.get_operations(); auto& vals_r = c.get_values(); auto begin_point = static_cast(node); auto end_point = c.find_endpoint(program, begin_point); auto begin_operator_id = ops_r[begin_point].id; const auto& type_info = program.get_operator_info(begin_operator_id); auto begin_itr = ops_r.begin() + begin_point; auto end_itr = ops_r.begin() + end_point; auto& new_tree = get_static_tree_tl(program); config.generator.get().generate(new_tree, {program, type_info.return_type, config.replacement_min_depth, config.replacement_max_depth}); auto& new_ops_r = new_tree.get_operations(); auto& new_vals_r = new_tree.get_values(); blt::size_t total_bytes_after = accumulate_type_sizes(end_itr, ops_r.end()); auto* stack_after_data = get_thread_pointer_for_size(total_bytes_after); // make a copy of any stack data after the mutation point / children. vals_r.copy_to(stack_after_data, total_bytes_after); // remove the bytes of the data after the mutation point and the data for the children of the mutation node. vals_r.pop_bytes(static_cast(total_bytes_after + accumulate_type_sizes(begin_itr, end_itr))); // insert the new tree then move back the data from after the original mutation point. vals_r.insert(new_vals_r); vals_r.copy_from(stack_after_data, total_bytes_after); auto before = begin_itr - 1; ops_r.erase(begin_itr, end_itr); ops_r.insert(++before, new_ops_r.begin(), new_ops_r.end()); // this will check to make sure that the tree is in a correct and executable state. it requires that the evaluation is context free! #if BLT_DEBUG_LEVEL >= 2 // BLT_ASSERT(new_vals_r.empty()); //BLT_ASSERT(stack_after.empty()); blt::size_t bytes_expected = 0; auto bytes_size = vals_r.size().total_used_bytes; for (const auto& op : c.get_operations()) { if (op.is_value) bytes_expected += stack_allocator::aligned_size(op.type_size); } if (bytes_expected != bytes_size) { BLT_WARN_STREAM << "Stack state: " << vals_r.size() << "\n"; BLT_WARN("Child tree bytes %ld vs expected %ld, difference: %ld", bytes_size, bytes_expected, static_cast(bytes_expected) - static_cast(bytes_size)); BLT_TRACE("Total bytes after: %ld", total_bytes_after); BLT_ABORT("Amount of bytes in stack doesn't match the number of bytes expected for the operations"); } auto copy = c; try { auto result = copy.evaluate(nullptr); blt::black_box(result); } catch (...) { std::cout << "This occurred at point " << begin_point << " ending at (old) " << end_point << "\n"; std::cout << "our root type is " << ops_r[begin_point].id << " with size " << stack_allocator::aligned_size(ops_r[begin_point].type_size) << "\n"; std::cout << "now Named: " << (program.get_name(ops_r[begin_point].id) ? *program.get_name(ops_r[begin_point].id) : "Unnamed") << "\n"; std::cout << "Was named: " << (program.get_name(begin_operator_id) ? *program.get_name(begin_operator_id) : "Unnamed") << "\n"; //std::cout << "Parent:" << std::endl; //p.print(program, std::cout, false, true); std::cout << "Child:" << std::endl; c.print(program, std::cout, false, true); std::cout << std::endl; c.print(program, std::cout, true, true); std::cout << std::endl; throw std::exception(); } #endif return begin_point + new_ops_r.size(); } bool advanced_mutation_t::apply(gp_program& program, const tree_t& p, tree_t& c) { (void) p; auto& ops = c.get_operations(); auto& vals = c.get_values(); for (blt::size_t c_node = 0; c_node < ops.size(); c_node++) { double node_mutation_chance = per_node_mutation_chance / static_cast(ops.size()); if (!program.get_random().choice(node_mutation_chance)) continue; #if BLT_DEBUG_LEVEL >= 2 tree_t c_copy = c; #endif // select an operator to apply auto selected_point = static_cast(mutation_operator::COPY); auto choice = program.get_random().get_double(); for (const auto& [index, value] : blt::enumerate(mutation_operator_chances)) { if (index == 0) { if (choice <= value) { selected_point = static_cast(index); break; } } else { if (choice > mutation_operator_chances[index - 1] && choice <= value) { selected_point = static_cast(index); break; } } } switch (static_cast(selected_point)) { case mutation_operator::EXPRESSION: c_node += mutate_point(program, c, c_node); break; case mutation_operator::ADJUST: { // this is going to be evil >:3 const auto& node = ops[c_node]; if (!node.is_value) { auto& current_func_info = program.get_operator_info(ops[c_node].id); operator_id random_replacement = program.get_random().select( program.get_type_non_terminals(current_func_info.return_type.id)); auto& replacement_func_info = program.get_operator_info(random_replacement); // cache memory used for offset data. thread_local static tracked_vector children_data; children_data.clear(); c.find_child_extends(program, children_data, c_node, current_func_info.argument_types.size()); for (const auto& [index, val] : blt::enumerate(replacement_func_info.argument_types)) { // need to generate replacement. if (index < current_func_info.argument_types.size() && val.id != current_func_info.argument_types[index].id) { // TODO: new config? auto& tree = get_static_tree_tl(program); config.generator.get().generate(tree, {program, val.id, config.replacement_min_depth, config.replacement_max_depth}); auto& child = children_data[children_data.size() - 1 - index]; blt::size_t total_bytes_for = c.total_value_bytes(child.start, child.end); blt::size_t total_bytes_after = c.total_value_bytes(child.end); auto after_ptr = get_thread_pointer_for_size(total_bytes_after); vals.copy_to(after_ptr, total_bytes_after); vals.pop_bytes(static_cast(total_bytes_after + total_bytes_for)); blt::size_t total_child_bytes = tree.total_value_bytes(); vals.copy_from(tree.get_values(), total_child_bytes); vals.copy_from(after_ptr, total_bytes_after); ops.erase(ops.begin() + child.start, ops.begin() + child.end); ops.insert(ops.begin() + child.start, tree.get_operations().begin(), tree.get_operations().end()); // shift over everybody after. if (index > 0) { // don't need to update if the index is the last for (auto& new_child : blt::iterate(children_data.end() - static_cast(index), children_data.end())) { // remove the old tree size, then add the new tree size to get the correct positions. new_child.start = new_child.start - (child.end - child.start) + static_cast(tree.get_operations().size()); new_child.end = new_child.end - (child.end - child.start) + static_cast(tree.get_operations().size()); } } child.end = static_cast(child.start + tree.get_operations().size()); #if BLT_DEBUG_LEVEL >= 2 blt::size_t found_bytes = vals.size().total_used_bytes; blt::size_t expected_bytes = std::accumulate(ops.begin(), ops.end(), 0ul, [](const auto& v1, const auto& v2) { if (v2.is_value) return v1 + stack_allocator::aligned_size(v2.type_size); return v1; }); if (found_bytes != expected_bytes) { BLT_WARN("Found bytes %ld vs Expected Bytes %ld", found_bytes, expected_bytes); BLT_ABORT("Amount of bytes in stack doesn't match the number of bytes expected for the operations"); } #endif } } if (current_func_info.argc.argc > replacement_func_info.argc.argc) { blt::size_t end_index = children_data[(current_func_info.argc.argc - replacement_func_info.argc.argc) - 1].end; blt::size_t start_index = children_data.begin()->start; blt::size_t total_bytes_for = c.total_value_bytes(start_index, end_index); blt::size_t total_bytes_after = c.total_value_bytes(end_index); auto* data = get_thread_pointer_for_size(total_bytes_after); vals.copy_to(data, total_bytes_after); vals.pop_bytes(static_cast(total_bytes_after + total_bytes_for)); vals.copy_from(data, total_bytes_after); ops.erase(ops.begin() + static_cast(start_index), ops.begin() + static_cast(end_index)); } else if (current_func_info.argc.argc == replacement_func_info.argc.argc) { // exactly enough args // return types should have been replaced if needed. this part should do nothing? } else { // not enough args blt::size_t start_index = c_node + 1; blt::size_t total_bytes_after = c.total_value_bytes(start_index); auto* data = get_thread_pointer_for_size(total_bytes_after); vals.copy_to(data, total_bytes_after); vals.pop_bytes(static_cast(total_bytes_after)); for (blt::ptrdiff_t i = static_cast(replacement_func_info.argc.argc) - 1; i >= current_func_info.argc.argc; i--) { auto& tree = get_static_tree_tl(program); config.generator.get().generate(tree, {program, replacement_func_info.argument_types[i].id, config.replacement_min_depth, config.replacement_max_depth}); vals.insert(tree.get_values()); ops.insert(ops.begin() + static_cast(start_index), tree.get_operations().begin(), tree.get_operations().end()); start_index += tree.get_operations().size(); } vals.copy_from(data, total_bytes_after); } // now finally update the type. ops[c_node] = {program.get_typesystem().get_type(replacement_func_info.return_type).size(), random_replacement, program.is_operator_ephemeral(random_replacement)}; } #if BLT_DEBUG_LEVEL >= 2 if (!c.check(program, nullptr)) { std::cout << "Parent: " << std::endl; c_copy.print(program, std::cout, false, true); std::cout << "Child Values:" << std::endl; c.print(program, std::cout, true, true); std::cout << std::endl; BLT_ABORT("Tree Check Failed."); } #endif } break; case mutation_operator::SUB_FUNC: { auto& current_func_info = program.get_operator_info(ops[c_node].id); // need to: // mutate the current function. // current function is moved to one of the arguments. // other arguments are generated. // get a replacement which returns the same type. auto& non_terminals = program.get_type_non_terminals(current_func_info.return_type.id); if (non_terminals.empty()) continue; operator_id random_replacement = program.get_random().select(non_terminals); blt::size_t arg_position = 0; do { auto& replacement_func_info = program.get_operator_info(random_replacement); for (const auto& [index, v] : blt::enumerate(replacement_func_info.argument_types)) { if (v.id == current_func_info.return_type.id) { arg_position = index; goto exit; } } random_replacement = program.get_random().select(program.get_type_non_terminals(current_func_info.return_type.id)); } while (true); exit: auto& replacement_func_info = program.get_operator_info(random_replacement); auto new_argc = replacement_func_info.argc.argc; // replacement function should be valid. let's make a copy of us. auto current_end = c.find_endpoint(program, static_cast(c_node)); blt::size_t for_bytes = c.total_value_bytes(c_node, current_end); blt::size_t after_bytes = c.total_value_bytes(current_end); auto size = current_end - c_node; auto combined_ptr = get_thread_pointer_for_size(for_bytes + after_bytes); vals.copy_to(combined_ptr, for_bytes + after_bytes); vals.pop_bytes(static_cast(for_bytes + after_bytes)); blt::size_t start_index = c_node; for (blt::ptrdiff_t i = new_argc - 1; i > static_cast(arg_position); i--) { auto& tree = get_static_tree_tl(program); config.generator.get().generate(tree, {program, replacement_func_info.argument_types[i].id, config.replacement_min_depth, config.replacement_max_depth}); blt::size_t total_bytes_for = tree.total_value_bytes(); vals.copy_from(tree.get_values(), total_bytes_for); ops.insert(ops.begin() + static_cast(start_index), tree.get_operations().begin(), tree.get_operations().end()); start_index += tree.get_operations().size(); } start_index += size; vals.copy_from(combined_ptr, for_bytes); for (blt::ptrdiff_t i = static_cast(arg_position) - 1; i >= 0; i--) { auto& tree = get_static_tree_tl(program); config.generator.get().generate(tree, {program, replacement_func_info.argument_types[i].id, config.replacement_min_depth, config.replacement_max_depth}); blt::size_t total_bytes_for = tree.total_value_bytes(); vals.copy_from(tree.get_values(), total_bytes_for); ops.insert(ops.begin() + static_cast(start_index), tree.get_operations().begin(), tree.get_operations().end()); start_index += tree.get_operations().size(); } vals.copy_from(combined_ptr + for_bytes, after_bytes); ops.insert(ops.begin() + static_cast(c_node), {program.get_typesystem().get_type(replacement_func_info.return_type).size(), random_replacement, program.is_operator_ephemeral(random_replacement)}); #if BLT_DEBUG_LEVEL >= 2 if (!c.check(program, nullptr)) { std::cout << "Parent: " << std::endl; p.print(program, std::cout, false, true); std::cout << "Child:" << std::endl; c.print(program, std::cout, false, true); std::cout << "Child Values:" << std::endl; c.print(program, std::cout, true, true); std::cout << std::endl; BLT_ABORT("Tree Check Failed."); } #endif } break; case mutation_operator::JUMP_FUNC: { auto& info = program.get_operator_info(ops[c_node].id); blt::size_t argument_index = -1ul; for (const auto& [index, v] : blt::enumerate(info.argument_types)) { if (v.id == info.return_type.id) { argument_index = index; break; } } if (argument_index == -1ul) continue; static thread_local tracked_vector child_data; child_data.clear(); c.find_child_extends(program, child_data, c_node, info.argument_types.size()); auto child_index = child_data.size() - 1 - argument_index; auto child = child_data[child_index]; auto for_bytes = c.total_value_bytes(child.start, child.end); auto after_bytes = c.total_value_bytes(child_data.back().end); auto storage_ptr = get_thread_pointer_for_size(for_bytes + after_bytes); vals.copy_to(storage_ptr + for_bytes, after_bytes); vals.pop_bytes(static_cast(after_bytes)); for (auto i = static_cast(child_data.size() - 1); i > static_cast(child_index); i--) { auto& cc = child_data[i]; auto bytes = c.total_value_bytes(cc.start, cc.end); vals.pop_bytes(static_cast(bytes)); ops.erase(ops.begin() + cc.start, ops.begin() + cc.end); } vals.copy_to(storage_ptr, for_bytes); vals.pop_bytes(static_cast(for_bytes)); for (auto i = static_cast(child_index - 1); i >= 0; i--) { auto& cc = child_data[i]; auto bytes = c.total_value_bytes(cc.start, cc.end); vals.pop_bytes(static_cast(bytes)); ops.erase(ops.begin() + cc.start, ops.begin() + cc.end); } ops.erase(ops.begin() + static_cast(c_node)); vals.copy_from(storage_ptr, for_bytes + after_bytes); #if BLT_DEBUG_LEVEL >= 2 if (!c.check(program, nullptr)) { std::cout << "Parent: " << std::endl; p.print(program, std::cout, false, true); std::cout << "Child Values:" << std::endl; c.print(program, std::cout, true, true); std::cout << std::endl; BLT_ABORT("Tree Check Failed."); } #endif } break; case mutation_operator::COPY: { auto& info = program.get_operator_info(ops[c_node].id); blt::size_t pt = -1ul; blt::size_t pf = -1ul; for (const auto& [index, v] : blt::enumerate(info.argument_types)) { for (blt::size_t i = index + 1; i < info.argument_types.size(); i++) { auto& v1 = info.argument_types[i]; if (v == v1) { if (pt == -1ul) pt = index; else pf = index; break; } } if (pt != -1ul && pf != -1ul) break; } if (pt == -1ul || pf == -1ul) continue; blt::size_t from = 0; blt::size_t to = 0; if (program.get_random().choice()) { from = pt; to = pf; } else { from = pf; to = pt; } static thread_local tracked_vector child_data; child_data.clear(); c.find_child_extends(program, child_data, c_node, info.argument_types.size()); auto from_index = child_data.size() - 1 - from; auto to_index = child_data.size() - 1 - to; auto& from_child = child_data[from_index]; auto& to_child = child_data[to_index]; blt::size_t from_bytes = c.total_value_bytes(from_child.start, from_child.end); blt::size_t after_from_bytes = c.total_value_bytes(from_child.end); blt::size_t to_bytes = c.total_value_bytes(to_child.start, to_child.end); blt::size_t after_to_bytes = c.total_value_bytes(to_child.end); auto after_bytes = std::max(after_from_bytes, after_to_bytes); auto from_ptr = get_thread_pointer_for_size(from_bytes); auto after_ptr = get_thread_pointer_for_size(after_bytes); vals.copy_to(after_ptr, after_from_bytes); vals.pop_bytes(static_cast(after_from_bytes)); vals.copy_to(from_ptr, from_bytes); vals.copy_from(after_ptr, after_from_bytes); vals.copy_to(after_ptr, after_to_bytes); vals.pop_bytes(static_cast(after_to_bytes + to_bytes)); vals.copy_from(from_ptr, from_bytes); vals.copy_from(after_ptr, after_to_bytes); static thread_local tracked_vector op_copy; op_copy.clear(); op_copy.insert(op_copy.begin(), ops.begin() + from_child.start, ops.begin() + from_child.end); ops.erase(ops.begin() + to_child.start, ops.begin() + to_child.end); ops.insert(ops.begin() + to_child.start, op_copy.begin(), op_copy.end()); } break; case mutation_operator::END: default: #if BLT_DEBUG_LEVEL > 1 BLT_ABORT("You shouldn't be able to get here!"); #else BLT_UNREACHABLE; #endif } } #if BLT_DEBUG_LEVEL >= 2 if (!c.check(program, nullptr)) { std::cout << "Parent: " << std::endl; p.print(program, std::cout, false, true); std::cout << "Child Values:" << std::endl; c.print(program, std::cout, true, true); std::cout << std::endl; BLT_ABORT("Tree Check Failed."); } #endif return true; } }