#pragma once /* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. */ #ifndef BLT_GP_SELECTION_H #define BLT_GP_SELECTION_H #include <blt/gp/fwdecl.h> #include <blt/gp/tree.h> #include <blt/gp/config.h> #include <blt/gp/random.h> #include <blt/std/assert.h> namespace blt::gp { struct selector_args { gp_program& program; population_t& next_pop; population_t& current_pop; population_stats& current_stats; prog_config_t& config; random_t& random; }; constexpr inline auto perform_elitism = [](const selector_args& args) { auto& [program, next_pop, current_pop, current_stats, config, random] = args; if (config.elites > 0) { std::vector<std::pair<std::size_t, double>> values; for (blt::size_t i = 0; i < config.elites; i++) values.emplace_back(i, current_pop.get_individuals()[i].fitness.adjusted_fitness); for (const auto& ind : blt::enumerate(current_pop.get_individuals())) { for (blt::size_t i = 0; i < config.elites; i++) { // BLT_INFO("%lf >= %lf? // %lf (indexes: %ld %ld)", ind.second.fitness.adjusted_fitness, values[i].second, // ind.second.fitness.raw_fitness, ind.first, values[i].first); if (ind.second.fitness.adjusted_fitness >= values[i].second) { bool doesnt_contain = true; for (blt::size_t j = 0; j < config.elites; j++) { if (ind.first == values[j].first) doesnt_contain = false; } if (doesnt_contain) values[i] = {ind.first, ind.second.fitness.adjusted_fitness}; break; } } } for (blt::size_t i = 0; i < config.elites; i++) next_pop.get_individuals().push_back(current_pop.get_individuals()[values[i].first]); } }; template<typename Crossover, typename Mutation, typename Reproduction> constexpr inline auto proportionate_next_pop_creator = []( const selector_args& args, Crossover crossover_selection, Mutation mutation_selection, Reproduction reproduction_selection) { auto& [program, next_pop, current_pop, current_stats, config, random] = args; double total_prob = config.mutation_chance + config.crossover_chance; double crossover_chance = config.crossover_chance / total_prob; double mutation_chance = crossover_chance + config.mutation_chance / total_prob; perform_elitism(args); while (next_pop.get_individuals().size() < config.population_size) { auto type = random.get_double(); if (type > crossover_chance && type < mutation_chance) { // crossover auto& p1 = crossover_selection.select(program, current_pop, current_stats); auto& p2 = crossover_selection.select(program, current_pop, current_stats); auto results = config.crossover.get().apply(program, p1, p2); // if crossover fails, we can check for mutation on these guys. otherwise straight copy them into the next pop if (results) { next_pop.get_individuals().emplace_back(std::move(results->child1)); // annoying check if (next_pop.get_individuals().size() < config.population_size) next_pop.get_individuals().emplace_back(std::move(results->child2)); } else { if (config.try_mutation_on_crossover_failure && random.choice(config.mutation_chance)) next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p1))); else next_pop.get_individuals().push_back(individual{p1}); // annoying check. if (next_pop.get_individuals().size() < config.population_size) { if (config.try_mutation_on_crossover_failure && random.choice(config.mutation_chance)) next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p2))); else next_pop.get_individuals().push_back(individual{p2}); } } } else if (type > mutation_chance) { // mutation auto& p = mutation_selection.select(program, current_pop, current_stats); next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p))); } else { // reproduction auto& p = reproduction_selection.select(program, current_pop, current_stats); next_pop.get_individuals().push_back(individual{p}); } } }; template<typename Crossover, typename Mutation, typename Reproduction> constexpr inline auto default_next_pop_creator = []( const blt::gp::selector_args& args, Crossover crossover_selection, Mutation mutation_selection, Reproduction reproduction_selection) { auto& [program, next_pop, current_pop, current_stats, config, random] = args; perform_elitism(args); while (next_pop.get_individuals().size() < config.population_size) { int sel = random.get_i32(0, 3); switch (sel) { case 0: // everyone gets a chance once per loop. if (random.choice(config.crossover_chance)) { // crossover auto& p1 = crossover_selection.select(program, current_pop, current_stats); auto& p2 = crossover_selection.select(program, current_pop, current_stats); auto results = config.crossover.get().apply(program, p1, p2); // if crossover fails, we can check for mutation on these guys. otherwise straight copy them into the next pop if (results) { next_pop.get_individuals().emplace_back(std::move(results->child1)); // annoying check if (next_pop.get_individuals().size() < config.population_size) next_pop.get_individuals().emplace_back(std::move(results->child2)); } } break; case 1: if (random.choice(config.mutation_chance)) { // mutation auto& p = mutation_selection.select(program, current_pop, current_stats); next_pop.get_individuals().emplace_back(std::move(config.mutator.get().apply(program, p))); } break; case 2: if (config.reproduction_chance > 0 && random.choice(config.reproduction_chance)) { // reproduction auto& p = reproduction_selection.select(program, current_pop, current_stats); next_pop.get_individuals().push_back(individual{p}); } break; default: BLT_ABORT("This is not possible!"); } } }; class selection_t { public: /** * @param program gp program to select with, used in randoms * @param pop population to select from * @param stats the populations statistics * @return */ virtual tree_t& select(gp_program& program, population_t& pop, population_stats& stats) = 0; virtual void pre_process(gp_program&, population_t&, population_stats&) {} virtual ~selection_t() = default; }; class select_best_t : public selection_t { public: tree_t& select(gp_program& program, population_t& pop, population_stats& stats) final; }; class select_worst_t : public selection_t { public: tree_t& select(gp_program& program, population_t& pop, population_stats& stats) final; }; class select_random_t : public selection_t { public: tree_t& select(gp_program& program, population_t& pop, population_stats& stats) final; }; class select_tournament_t : public selection_t { public: explicit select_tournament_t(blt::size_t selection_size = 3): selection_size(selection_size) { if (selection_size < 1) BLT_ABORT("Unable to select with this size. Must select at least 1 individual!"); } tree_t& select(gp_program& program, population_t& pop, population_stats& stats) final; private: const blt::size_t selection_size; }; class select_fitness_proportionate_t : public selection_t { public: void pre_process(gp_program& program, population_t& pop, population_stats& stats) final; tree_t& select(gp_program& program, population_t& pop, population_stats& stats) final; }; } #endif //BLT_GP_SELECTION_H