/* * * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include namespace blt::gp { inline blt::size_t accumulate_type_sizes(detail::op_iter begin, detail::op_iter end) { blt::size_t total = 0; for (auto it = begin; it != end; ++it) { if (it->is_value) total += stack_allocator::aligned_size(it->type_size); } return total; } template blt::u8* get_thread_pointer_for_size(blt::size_t bytes) { static thread_local blt::expanding_buffer buffer; if (bytes > buffer.size()) buffer.resize(bytes); return buffer.data(); } grow_generator_t grow_generator; mutation_t::config_t::config_t(): generator(grow_generator) {} blt::expected crossover_t::apply(gp_program& program, const tree_t& p1, const tree_t& p2) // NOLINT { result_t result{p1, p2}; auto& c1 = result.child1; auto& c2 = result.child2; auto& c1_ops = c1.get_operations(); auto& c2_ops = c2.get_operations(); if (c1_ops.size() < 5 || c2_ops.size() < 5) return blt::unexpected(error_t::TREE_TOO_SMALL); auto point = get_crossover_point(program, c1, c2); if (!point) return blt::unexpected(point.error()); auto crossover_point_begin_itr = c1_ops.begin() + point->p1_crossover_point; auto crossover_point_end_itr = c1_ops.begin() + find_endpoint(program, c1_ops, point->p1_crossover_point); auto found_point_begin_itr = c2_ops.begin() + point->p2_crossover_point; auto found_point_end_itr = c2_ops.begin() + find_endpoint(program, c2_ops, point->p2_crossover_point); stack_allocator& c1_stack = c1.get_values(); stack_allocator& c2_stack = c2.get_values(); // we have to make a copy because we will modify the underlying storage. static thread_local std::vector c1_operators; static thread_local std::vector c2_operators; c1_operators.clear(); c2_operators.clear(); for (const auto& op : blt::iterate(crossover_point_begin_itr, crossover_point_end_itr)) c1_operators.push_back(op); for (const auto& op : blt::iterate(found_point_begin_itr, found_point_end_itr)) c2_operators.push_back(op); blt::size_t c1_stack_after_bytes = accumulate_type_sizes(crossover_point_end_itr, c1_ops.end()); blt::size_t c1_stack_for_bytes = accumulate_type_sizes(crossover_point_begin_itr, crossover_point_end_itr); blt::size_t c2_stack_after_bytes = accumulate_type_sizes(found_point_end_itr, c2_ops.end()); blt::size_t c2_stack_for_bytes = accumulate_type_sizes(found_point_begin_itr, found_point_end_itr); auto c1_total = static_cast(c1_stack_after_bytes + c1_stack_for_bytes); auto c2_total = static_cast(c2_stack_after_bytes + c2_stack_for_bytes); auto copy_ptr_c1 = get_thread_pointer_for_size(c1_total); auto copy_ptr_c2 = get_thread_pointer_for_size(c2_total); c1_stack.copy_to(copy_ptr_c1, c1_total); c1_stack.pop_bytes(c1_total); c2_stack.copy_to(copy_ptr_c2, c2_total); c2_stack.pop_bytes(c2_total); c2_stack.copy_from(copy_ptr_c1, c1_stack_for_bytes); c2_stack.copy_from(copy_ptr_c2 + c2_stack_for_bytes, c2_stack_after_bytes); c1_stack.copy_from(copy_ptr_c2, c2_stack_for_bytes); c1_stack.copy_from(copy_ptr_c1 + c1_stack_for_bytes, c1_stack_after_bytes); // now swap the operators auto insert_point_c1 = crossover_point_begin_itr - 1; auto insert_point_c2 = found_point_begin_itr - 1; // invalidates [begin, end()) so the insert points should be fine c1_ops.erase(crossover_point_begin_itr, crossover_point_end_itr); c2_ops.erase(found_point_begin_itr, found_point_end_itr); c1_ops.insert(++insert_point_c1, c2_operators.begin(), c2_operators.end()); c2_ops.insert(++insert_point_c2, c1_operators.begin(), c1_operators.end()); #if BLT_DEBUG_LEVEL >= 2 blt::size_t c1_found_bytes = result.child1.get_values().size().total_used_bytes; blt::size_t c2_found_bytes = result.child2.get_values().size().total_used_bytes; blt::size_t c1_expected_bytes = std::accumulate(result.child1.get_operations().begin(), result.child1.get_operations().end(), 0ul, [](const auto& v1, const auto& v2) { if (v2.is_value) return v1 + stack_allocator::aligned_size(v2.type_size); return v1; }); blt::size_t c2_expected_bytes = std::accumulate(result.child2.get_operations().begin(), result.child2.get_operations().end(), 0ul, [](const auto& v1, const auto& v2) { if (v2.is_value) return v1 + stack_allocator::aligned_size(v2.type_size); return v1; }); if (c1_found_bytes != c1_expected_bytes || c2_found_bytes != c2_expected_bytes) { BLT_WARN("C1 Found bytes %ld vs Expected Bytes %ld", c1_found_bytes, c1_expected_bytes); BLT_WARN("C2 Found bytes %ld vs Expected Bytes %ld", c2_found_bytes, c2_expected_bytes); BLT_ABORT("Amount of bytes in stack doesn't match the number of bytes expected for the operations"); } #endif return result; } blt::expected crossover_t::get_crossover_point(gp_program& program, const tree_t& c1, const tree_t& c2) const { auto& c1_ops = c1.get_operations(); auto& c2_ops = c2.get_operations(); blt::size_t crossover_point = program.get_random().get_size_t(1ul, c1_ops.size()); while (config.avoid_terminals && program.get_operator_info(c1_ops[crossover_point].id).argc.is_terminal()) crossover_point = program.get_random().get_size_t(1ul, c1_ops.size()); blt::size_t attempted_point = 0; const auto& crossover_point_type = program.get_operator_info(c1_ops[crossover_point].id); operator_info* attempted_point_type = nullptr; blt::size_t counter = 0; do { if (counter >= config.max_crossover_tries) { if (config.should_crossover_try_forward) { bool found = false; for (auto i = attempted_point + 1; i < c2_ops.size(); i++) { auto* info = &program.get_operator_info(c2_ops[i].id); if (info->return_type == crossover_point_type.return_type) { if (config.avoid_terminals && info->argc.is_terminal()) continue; attempted_point = i; attempted_point_type = info; found = true; break; } } if (!found) return blt::unexpected(error_t::NO_VALID_TYPE); } // should we try again over the whole tree? probably not. return blt::unexpected(error_t::NO_VALID_TYPE); } else { attempted_point = program.get_random().get_size_t(1ul, c2_ops.size()); attempted_point_type = &program.get_operator_info(c2_ops[attempted_point].id); if (config.avoid_terminals && attempted_point_type->argc.is_terminal()) continue; if (crossover_point_type.return_type == attempted_point_type->return_type) break; counter++; } } while (true); return crossover_point_t{static_cast(crossover_point), static_cast(attempted_point)}; } tree_t mutation_t::apply(gp_program& program, const tree_t& p) { auto c = p; auto& ops_r = c.get_operations(); auto& vals_r = c.get_values(); auto begin_point = static_cast(program.get_random().get_size_t(0ul, ops_r.size())); auto end_point = find_endpoint(program, ops_r, begin_point); auto begin_operator_id = ops_r[begin_point].id; const auto& type_info = program.get_operator_info(begin_operator_id); auto begin_itr = ops_r.begin() + begin_point; auto end_itr = ops_r.begin() + end_point; auto new_tree = config.generator.get().generate({program, type_info.return_type, config.replacement_min_depth, config.replacement_max_depth}); auto& new_ops_r = new_tree.get_operations(); auto& new_vals_r = new_tree.get_values(); blt::size_t total_bytes_after = accumulate_type_sizes(end_itr, ops_r.end()); auto* stack_after_data = get_thread_pointer_for_size(total_bytes_after); // make a copy of any stack data after the mutation point / children. vals_r.copy_to(stack_after_data, total_bytes_after); // remove the bytes of the data after the mutation point and the data for the children of the mutation node. vals_r.pop_bytes(static_cast(total_bytes_after + accumulate_type_sizes(begin_itr, end_itr))); // insert the new tree then move back the data from after the original mutation point. vals_r.insert(std::move(new_vals_r)); vals_r.copy_from(stack_after_data, total_bytes_after); auto before = begin_itr - 1; ops_r.erase(begin_itr, end_itr); ops_r.insert(++before, new_ops_r.begin(), new_ops_r.end()); // this will check to make sure that the tree is in a correct and executable state. it requires that the evaluation is context free! #if BLT_DEBUG_LEVEL >= 2 BLT_ASSERT(new_vals_r.empty()); //BLT_ASSERT(stack_after.empty()); blt::size_t bytes_expected = 0; auto bytes_size = vals_r.size().total_used_bytes; for (const auto& op : c.get_operations()) { if (op.is_value) bytes_expected += stack_allocator::aligned_size(op.type_size); } if (bytes_expected != bytes_size) { BLT_WARN_STREAM << "Stack state: " << vals_r.size() << "\n"; BLT_WARN("Child tree bytes %ld vs expected %ld, difference: %ld", bytes_size, bytes_expected, static_cast(bytes_expected) - static_cast(bytes_size)); BLT_TRACE("Total bytes after: %ld", total_bytes_after); BLT_ABORT("Amount of bytes in stack doesn't match the number of bytes expected for the operations"); } auto copy = c; try { auto result = copy.evaluate(nullptr); blt::black_box(result); } catch (...) { std::cout << "This occurred at point " << begin_point << " ending at (old) " << end_point << "\n"; std::cout << "our root type is " << ops_r[begin_point].id << " with size " << stack_allocator::aligned_size(ops_r[begin_point].type_size) << "\n"; std::cout << "now Named: " << (program.get_name(ops_r[begin_point].id) ? *program.get_name(ops_r[begin_point].id) : "Unnamed") << "\n"; std::cout << "Was named: " << (program.get_name(begin_operator_id) ? *program.get_name(begin_operator_id) : "Unnamed") << "\n"; std::cout << "Parent:" << std::endl; p.print(program, std::cout, false, true); std::cout << "Child:" << std::endl; c.print(program, std::cout, false, true); std::cout << std::endl; c.print(program, std::cout, true, true); std::cout << std::endl; throw std::exception(); } #endif return c; } blt::ptrdiff_t find_endpoint(blt::gp::gp_program& program, const std::vector& container, blt::ptrdiff_t index) { blt::i64 children_left = 0; do { const auto& type = program.get_operator_info(container[index].id); // this is a child to someone if (children_left != 0) children_left--; if (type.argc.argc > 0) children_left += type.argc.argc; index++; } while (children_left > 0); return index; } }