/* * * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include namespace blt::gp { blt::expected crossover_t::apply(gp_program& program, const tree_t& p1, const tree_t& p2) // NOLINT { result_t result{p1, p2}; #if BLT_DEBUG_LEVEL > 0 BLT_INFO("Child 1 Stack empty? %s", result.child1.get_values().empty() ? "true" : "false"); BLT_INFO("Child 2 Stack empty? %s", result.child2.get_values().empty() ? "true" : "false"); #endif auto& c1 = result.child1; auto& c2 = result.child2; auto& c1_ops = c1.get_operations(); auto& c2_ops = c2.get_operations(); if (c1_ops.size() < 5 || c2_ops.size() < 5) return blt::unexpected(error_t::TREE_TOO_SMALL); std::uniform_int_distribution op_sel1(3ul, c1_ops.size() - 1); std::uniform_int_distribution op_sel2(3ul, c2_ops.size() - 1); blt::size_t crossover_point = op_sel1(program.get_random()); while (config.avoid_terminals && program.get_operator_info(c1_ops[crossover_point].id).argc.is_terminal()) crossover_point = op_sel1(program.get_random()); blt::size_t attempted_point = 0; const auto& crossover_point_type = program.get_operator_info(c1_ops[crossover_point].id); operator_info* attempted_point_type = nullptr; blt::size_t counter = 0; do { if (counter >= config.max_crossover_tries) { if (config.should_crossover_try_forward) { bool found = false; for (auto i = attempted_point + 1; i < c2_ops.size(); i++) { auto* info = &program.get_operator_info(c2_ops[i].id); if (info->return_type == crossover_point_type.return_type) { if (config.avoid_terminals && info->argc.is_terminal()) continue; attempted_point = i; attempted_point_type = info; found = true; break; } } if (!found) return blt::unexpected(error_t::NO_VALID_TYPE); } // should we try again over the whole tree? probably not. return blt::unexpected(error_t::NO_VALID_TYPE); } else { attempted_point = op_sel2(program.get_random()); attempted_point_type = &program.get_operator_info(c2_ops[attempted_point].id); if (config.avoid_terminals && attempted_point_type->argc.is_terminal()) continue; if (crossover_point_type.return_type == attempted_point_type->return_type) break; counter++; } } while (true); blt::i64 children_left = 0; blt::size_t index = crossover_point; do { const auto& type = program.get_operator_info(c1_ops[index].id); #if BLT_DEBUG_LEVEL > 1 #define MAKE_C_STR() program.get_name(c1_ops[index].id).has_value() ? std::string(program.get_name(c1_ops[index].id).value()).c_str() : std::to_string(c1_ops[index].id).c_str() BLT_TRACE("Crossover type: %s, op: %s", std::string(program.get_typesystem().get_type(type.return_type).name()).c_str(), MAKE_C_STR()); #undef MAKE_C_STR #endif // this is a child to someone if (children_left != 0) children_left--; if (type.argc.argc > 0) children_left += type.argc.argc; index++; } while (children_left > 0); auto crossover_point_begin_itr = c1_ops.begin() + static_cast(crossover_point); auto crossover_point_end_itr = c1_ops.begin() + static_cast(index); #if BLT_DEBUG_LEVEL > 0 BLT_TRACE("[%ld %ld) %ld", crossover_point, index, index - crossover_point); #endif children_left = 0; index = attempted_point; do { const auto& type = program.get_operator_info(c2_ops[index].id); #if BLT_DEBUG_LEVEL > 1 #define MAKE_C_STR() program.get_name(c2_ops[index].id).has_value() ? std::string(program.get_name(c2_ops[index].id).value()).c_str() : std::to_string(c2_ops[index].id).c_str() BLT_TRACE("Found type: %s, op: %s", std::string(program.get_typesystem().get_type(type.return_type).name()).c_str(), MAKE_C_STR()); #undef MAKE_C_STR #endif // this is a child to someone if (children_left != 0) children_left--; if (type.argc.argc > 0) children_left += type.argc.argc; index++; } while (children_left > 0); auto found_point_begin_itr = c2_ops.begin() + static_cast(attempted_point); auto found_point_end_itr = c2_ops.begin() + static_cast(index); #if BLT_DEBUG_LEVEL > 0 BLT_TRACE("[%ld %ld) %ld", attempted_point, index, index - attempted_point); #endif stack_allocator& c1_stack_init = c1.get_values(); stack_allocator& c2_stack_init = c2.get_values(); std::vector c1_operators; std::vector c2_operators; for (const auto& op : blt::enumerate(crossover_point_begin_itr, crossover_point_end_itr)) c1_operators.push_back(op); for (const auto& op : blt::enumerate(found_point_begin_itr, found_point_end_itr)) c2_operators.push_back(op); #if BLT_DEBUG_LEVEL > 0 BLT_TRACE("Sizes: %ld %ld || Ops size: %ld %ld", c1_operators.size(), c2_operators.size(), c1_ops.size(), c2_ops.size()); #endif stack_allocator c1_stack_after_copy; stack_allocator c1_stack_for_copy; stack_allocator c2_stack_after_copy; stack_allocator c2_stack_for_copy; #if BLT_DEBUG_LEVEL > 1 BLT_DEBUG("Transferring past crossover 1:"); #endif // transfer all values after the crossover point. these will need to be transferred back to child2 for (auto it = c1_ops.end() - 1; it != crossover_point_end_itr - 1; it--) { if (it->is_value) it->transfer(c1_stack_after_copy, c1_stack_init); } #if BLT_DEBUG_LEVEL > 1 BLT_DEBUG("Transferring for crossover 1:"); #endif // transfer all values for the crossover point. for (auto it = crossover_point_end_itr - 1; it != crossover_point_begin_itr - 1; it--) { if (it->is_value) it->transfer(c1_stack_for_copy, c1_stack_init); } #if BLT_DEBUG_LEVEL > 1 BLT_DEBUG("Transferring past crossover 2:"); #endif // transfer child2 values for copying back into c1 for (auto it = c2_ops.end() - 1; it != found_point_end_itr - 1; it--) { if (it->is_value) it->transfer(c2_stack_after_copy, c2_stack_init); } #if BLT_DEBUG_LEVEL > 1 BLT_DEBUG("Transferring for crossover 2:"); #endif for (auto it = found_point_end_itr - 1; it != found_point_begin_itr - 1; it--) { if (it->is_value) it->transfer(c2_stack_for_copy, c2_stack_init); } #if BLT_DEBUG_LEVEL > 1 BLT_DEBUG("Transferring back for crossover 1:"); #endif // now copy back into the respective children for (auto it = found_point_begin_itr; it != found_point_end_itr; it++) { if (it->is_value) it->transfer(c1.get_values(), c2_stack_for_copy); } #if BLT_DEBUG_LEVEL > 1 BLT_DEBUG("Transferring back for crossover 2:"); #endif for (auto it = crossover_point_begin_itr; it != crossover_point_end_itr; it++) { if (it->is_value) it->transfer(c2.get_values(), c1_stack_for_copy); } #if BLT_DEBUG_LEVEL > 1 BLT_DEBUG("Transferring back after crossover 1:"); #endif // now copy after the crossover point back to the correct children for (auto it = crossover_point_end_itr; it != c1_ops.end(); it++) { if (it->is_value) it->transfer(c1.get_values(), c1_stack_after_copy); } #if BLT_DEBUG_LEVEL > 1 BLT_DEBUG("Transferring back after crossover 2:"); #endif for (auto it = found_point_end_itr; it != c2_ops.end(); it++) { if (it->is_value) it->transfer(c2.get_values(), c2_stack_after_copy); } // now swap the operators auto insert_point_c1 = crossover_point_begin_itr - 1; auto insert_point_c2 = found_point_begin_itr - 1; // invalidates [begin, end()) so the insert points should be fine c1_ops.erase(crossover_point_begin_itr, crossover_point_end_itr); c2_ops.erase(found_point_begin_itr, found_point_end_itr); c1_ops.insert(++insert_point_c1, c2_operators.begin(), c2_operators.end()); c2_ops.insert(++insert_point_c2, c1_operators.begin(), c1_operators.end()); return result; } tree_t mutation_t::apply(gp_program& program, tree_generator_t& generator, const tree_t& p) { auto c = p; auto& ops = c.get_operations(); auto& vals = c.get_values(); std::uniform_int_distribution point_sel_dist(0ul, ops.size() - 1); auto point = point_sel_dist(program.get_random()); const auto& type_info = program.get_operator_info(ops[point].id); blt::i64 children_left = 0; blt::size_t index = point; do { const auto& type = program.get_operator_info(ops[index].id); // this is a child to someone if (children_left != 0) children_left--; if (type.argc.argc > 0) children_left += type.argc.argc; index++; } while (children_left > 0); auto begin_p = ops.begin() + static_cast(point); auto end_p = ops.begin() + static_cast(index); stack_allocator after_stack; //std::vector after_ops; for (auto it = ops.end() - 1; it != end_p - 1; it--) { if (it->is_value) { it->transfer(after_stack, vals); //after_ops.push_back(*it); } } for (auto it = end_p - 1; it != begin_p - 1; it--) { if (it->is_value) it->transfer(std::optional>{}, vals); } auto before = begin_p - 1; ops.erase(begin_p, end_p); auto new_tree = generator.generate({program, type_info.return_type, config.replacement_min_depth, config.replacement_max_depth}); auto& new_ops = new_tree.get_operations(); auto& new_vals = new_tree.get_values(); ops.insert(++before, new_ops.begin(), new_ops.end()); for (const auto& op : new_ops) { if (op.is_value) op.transfer(vals, new_vals); } auto new_end_point = point + new_ops.size(); auto new_end_p = ops.begin() + static_cast(new_end_point); for (auto it = new_end_p; it != ops.end(); it++) { if (it->is_value) it->transfer(vals, after_stack); } return c; } }