#pragma once /* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. */ #ifndef BLT_GP_TREE_H #define BLT_GP_TREE_H #include <blt/gp/typesystem.h> #include <blt/gp/stack.h> #include <blt/gp/fwdecl.h> #include <blt/std/types.h> #include <utility> #include <stack> #include <ostream> #include <atomic> namespace blt::gp { struct op_container_t { op_container_t(detail::callable_t& func, blt::size_t type_size, operator_id id, bool is_value): func(func), type_size(type_size), id(id), is_value(is_value) {} std::reference_wrapper<detail::callable_t> func; blt::size_t type_size; //std::reference_wrapper<detail::transfer_t> transfer; operator_id id; bool is_value; }; class evaluation_context { friend class tree_t; private: explicit evaluation_context() {} blt::gp::stack_allocator values; }; class tree_t { using iter_type = std::vector<op_container_t>::const_iterator; public: tree_t(): reference_counter(new std::atomic_int64_t(1)) {} tree_t(const tree_t& copy): operations(copy.operations), values(copy.values), reference_counter(copy.reference_counter) { reference_counter->operator++(); } tree_t(tree_t&& move) noexcept: operations(std::move(move.operations)), values(std::move(move.values)), reference_counter(move.reference_counter) { move.reference_counter = nullptr; } tree_t& operator=(const tree_t& copy) = delete; tree_t& operator=(tree_t&& move) noexcept { operations = std::exchange(operations, std::move(move.operations)); values = std::exchange(values, std::move(move.values)); reference_counter = std::exchange(reference_counter, move.reference_counter); return *this; } [[nodiscard]] inline std::vector<op_container_t>& get_operations() { return operations; } [[nodiscard]] inline const std::vector<op_container_t>& get_operations() const { return operations; } [[nodiscard]] inline blt::gp::stack_allocator& get_values() { return values; } [[nodiscard]] inline const blt::gp::stack_allocator& get_values() const { return values; } evaluation_context evaluate(void* context) const; blt::size_t get_depth(gp_program& program); /** * Helper template for returning the result of the last evaluation */ template<typename T> T get_evaluation_value(evaluation_context& context) { return context.values.pop<T>(); } /** * Helper template for returning the result of the last evaluation */ template<typename T> T& get_evaluation_ref(evaluation_context& context) { return context.values.from<T>(0); } /** * Helper template for returning the result of evaluation (this calls it) */ template<typename T> T get_evaluation_value(void* context) { auto results = evaluate(context); return results.values.pop<T>(); } void print(gp_program& program, std::ostream& output, bool print_literals = true, bool pretty_indent = false, bool include_types = false) const; bool check(gp_program& program, void* context) const; blt::ptrdiff_t find_endpoint(blt::gp::gp_program& program, blt::ptrdiff_t start); // valid for [begin, end) static blt::size_t total_value_bytes(iter_type begin, iter_type end) { blt::size_t total = 0; for (auto it = begin; it != end; it++) { if (it->is_value) total += stack_allocator::aligned_size(it->type_size); } return total; } [[nodiscard]] blt::size_t total_value_bytes(blt::size_t begin, blt::size_t end) const { return total_value_bytes(operations.begin() + static_cast<blt::ptrdiff_t>(begin), operations.begin() + static_cast<blt::ptrdiff_t>(end)); } [[nodiscard]] blt::size_t total_value_bytes(blt::size_t begin) const { return total_value_bytes(operations.begin() + static_cast<blt::ptrdiff_t>(begin), operations.end()); } [[nodiscard]] blt::size_t total_value_bytes() const { return total_value_bytes(operations.begin(), operations.end()); } void drop(gp_program& program); ~tree_t() { if (reference_counter == nullptr) return; reference_counter->operator--(); if (*reference_counter == 0) delete reference_counter; } private: std::vector<op_container_t> operations; blt::gp::stack_allocator values; std::atomic_int64_t* reference_counter; }; struct fitness_t { double raw_fitness = 0; double standardized_fitness = 0; double adjusted_fitness = 0; blt::i64 hits = 0; }; struct individual { tree_t tree; fitness_t fitness; individual() = default; explicit individual(tree_t&& tree): tree(std::move(tree)) {} explicit individual(const tree_t& tree): tree(tree) {} individual(const individual&) = default; individual(individual&&) = default; individual& operator=(const individual&) = delete; individual& operator=(individual&&) = default; }; struct population_stats { std::atomic<double> overall_fitness = 0; std::atomic<double> average_fitness = 0; std::atomic<double> best_fitness = 0; std::atomic<double> worst_fitness = 1; std::vector<double> normalized_fitness{}; void clear() { overall_fitness = 0; average_fitness = 0; best_fitness = 0; worst_fitness = 0; normalized_fitness.clear(); } }; class population_t { public: class population_tree_iterator { public: population_tree_iterator(std::vector<individual>& ind, blt::size_t pos): ind(ind), pos(pos) {} auto begin() { return population_tree_iterator(ind, 0); } auto end() { return population_tree_iterator(ind, ind.size()); } population_tree_iterator operator++(int) { auto prev = pos++; return {ind, prev}; } population_tree_iterator operator++() { return {ind, ++pos}; } tree_t& operator*() { return ind[pos].tree; } tree_t& operator->() { return ind[pos].tree; } friend bool operator==(population_tree_iterator a, population_tree_iterator b) { return a.pos == b.pos; } friend bool operator!=(population_tree_iterator a, population_tree_iterator b) { return a.pos != b.pos; } private: std::vector<individual>& ind; blt::size_t pos; }; std::vector<individual>& get_individuals() { return individuals; } population_tree_iterator for_each_tree() { return population_tree_iterator{individuals, 0}; } auto begin() { return individuals.begin(); } auto end() { return individuals.end(); } [[nodiscard]] auto begin() const { return individuals.begin(); } [[nodiscard]] auto end() const { return individuals.end(); } void clear() { individuals.clear(); } population_t() = default; population_t(const population_t&) = default; population_t(population_t&&) = default; population_t& operator=(const population_t&) = delete; population_t& operator=(population_t&&) = default; private: std::vector<individual> individuals; }; } #endif //BLT_GP_TREE_H