/* * * Copyright (C) 2025 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "../examples/symbolic_regression.h" #include #include using namespace blt::gp; struct drop_type { float silly_type; void drop() const { BLT_TRACE("Wow silly type of value %f was dropped!", silly_type); } }; struct context { float x, y; }; prog_config_t config = prog_config_t() .set_initial_min_tree_size(2) .set_initial_max_tree_size(6) .set_elite_count(2) .set_crossover_chance(0.8) .set_mutation_chance(0.1) .set_reproduction_chance(0.1) .set_max_generations(50) .set_pop_size(500) .set_thread_count(0); example::symbolic_regression_t regression{691ul, config}; operation_t add{[](const float a, const float b) { return a + b; }, "add"}; operation_t sub([](const float a, const float b) { return a - b; }, "sub"); operation_t mul([](const float a, const float b) { return a * b; }, "mul"); operation_t pro_div([](const float a, const float b) { return b == 0.0f ? 0.0f : a / b; }, "div"); operation_t op_sin([](const float a) { return std::sin(a); }, "sin"); operation_t op_cos([](const float a) { return std::cos(a); }, "cos"); operation_t op_exp([](const float a) { return std::exp(a); }, "exp"); operation_t op_log([](const float a) { return a == 0.0f ? 0.0f : std::log(a); }, "log"); operation_t op_conv([](const drop_type d) { return d.silly_type; }, "conv"); auto lit = operation_t([]() { return drop_type{regression.get_program().get_random().get_float(-1.0f, 1.0f)}; }, "lit").set_ephemeral(); operation_t op_x([](const context& context) { return context.x; }, "x"); int main() { operator_builder builder{}; builder.build(add, sub, mul, pro_div, op_sin, op_cos, op_exp, op_log, lit, op_x); regression.get_program().set_operations(builder.grab()); regression.generate_initial_population(); auto& program = regression.get_program(); while (!program.should_terminate()) { BLT_TRACE("Creating next generation"); program.create_next_generation(); BLT_TRACE("Move to next generation"); program.next_generation(); BLT_TRACE("Evaluate Fitness"); program.evaluate_fitness(); } }