/* * * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include namespace blt::gp { // TODO: change how the generators work, but keep how nice everything is within the C++ file. less headers! // maybe have tree call the generate functions with out variables as the members of tree_t struct stack { blt::gp::operator_id id; blt::size_t depth; }; inline std::stack get_initial_stack(gp_program& program, type_id root_type) { std::stack tree_generator; // // auto& system = program.get_typesystem(); // // select a type which has a non-empty set of non-terminals // type base_type; // do // { // base_type = system.select_type(program.get_random()); // } while (program.get_type_non_terminals(base_type.id()).empty()); // tree_generator.push(stack{program.select_non_terminal(root_type), 1}); return tree_generator; } template inline tree_t create_tree(Func&& perChild, const generator_arguments& args) { std::stack tree_generator = get_initial_stack(args.program, args.root_type); blt::size_t max_depth = 0; tree_t tree; while (!tree_generator.empty()) { auto top = tree_generator.top(); tree_generator.pop(); tree.get_operations().emplace_back( args.program.get_operation(top.id), static_cast(top.depth), args.program.is_static(top.id), static_cast(args.program.get_argc(top.id).argc), static_cast(args.program.get_argc(top.id).argc_context) ); max_depth = std::max(max_depth, top.depth); if (args.program.is_static(top.id)) { args.program.get_operation(top.id)(nullptr, tree.get_values()); continue; } for (const auto& child : args.program.get_argument_types(top.id)) { std::forward(perChild)(args.program, tree_generator, child, top.depth + 1); } } tree.setDepth(max_depth); return tree; } tree_t grow_generator_t::generate(const generator_arguments& args) { return create_tree([args](gp_program& program, std::stack& tree_generator, const type& type, blt::size_t new_depth) { if (new_depth >= args.max_depth) { tree_generator.push({program.select_terminal(type.id()), new_depth}); return; } if (program.choice() || new_depth < args.min_depth) tree_generator.push({program.select_non_terminal(type.id()), new_depth}); else tree_generator.push({program.select_terminal(type.id()), new_depth}); }, args); } tree_t full_generator_t::generate(const generator_arguments& args) { return create_tree([args](gp_program& program, std::stack& tree_generator, const type& type, blt::size_t new_depth) { if (new_depth >= args.max_depth) { tree_generator.push({program.select_terminal(type.id()), new_depth}); return; } tree_generator.push({program.select_non_terminal(type.id()), new_depth}); }, args); } population_t grow_initializer_t::generate(const initializer_arguments& args) { population_t pop; for (auto i = 0ul; i < args.size; i++) pop.getIndividuals().push_back(grow.generate(args.to_gen_args())); return pop; } population_t full_initializer_t::generate(const initializer_arguments& args) { population_t pop; for (auto i = 0ul; i < args.size; i++) pop.getIndividuals().push_back(full.generate(args.to_gen_args())); return pop; } population_t half_half_initializer_t::generate(const initializer_arguments& args) { population_t pop; for (auto i = 0ul; i < args.size; i++) { if (args.program.choice()) pop.getIndividuals().push_back(full.generate(args.to_gen_args())); else pop.getIndividuals().push_back(grow.generate(args.to_gen_args())); } return pop; } population_t ramped_half_initializer_t::generate(const initializer_arguments& args) { auto steps = args.max_depth - args.min_depth; auto per_step = args.size / steps; auto remainder = args.size % steps; population_t pop; for (auto depth : blt::range(args.min_depth, args.max_depth)) { for (auto i = 0ul; i < per_step; i++) { if (args.program.choice()) pop.getIndividuals().push_back(full.generate({args.program, args.root_type, args.min_depth, depth})); else pop.getIndividuals().push_back(grow.generate({args.program, args.root_type, args.min_depth, depth})); } } for (auto i = 0ul; i < remainder; i++) { if (args.program.choice()) pop.getIndividuals().push_back(full.generate(args.to_gen_args())); else pop.getIndividuals().push_back(grow.generate(args.to_gen_args())); } blt_assert(pop.getIndividuals().size() == args.size); return pop; } }