#pragma once /* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef BLT_GP_UTIL_STATISTICS_H #define BLT_GP_UTIL_STATISTICS_H #include #include #include namespace blt::gp { struct confusion_matrix_t { public: confusion_matrix_t() = default; confusion_matrix_t& is_A_predicted_A() { ++is_A_pred_A; return *this; } confusion_matrix_t& is_A_predicted_B() { ++is_A_pred_B; return *this; } confusion_matrix_t& is_B_predicted_A() { ++is_B_pred_A; return *this; } confusion_matrix_t& is_B_predicted_B() { ++is_B_pred_B; return *this; } confusion_matrix_t& set_name_a(const std::string& name_a) { name_A = name_a; return *this; } confusion_matrix_t& set_name_b(const std::string& name_b) { name_B = name_b; return *this; } [[nodiscard]] u64 get_is_a_pred_a() const { return is_A_pred_A; } [[nodiscard]] u64 get_is_a_pred_b() const { return is_A_pred_B; } [[nodiscard]] u64 get_is_b_pred_b() const { return is_B_pred_B; } [[nodiscard]] u64 get_is_b_pred_a() const { return is_B_pred_A; } confusion_matrix_t& operator+=(const confusion_matrix_t& op) { is_A_pred_A += op.is_A_pred_A; is_B_pred_A += op.is_B_pred_A; is_A_pred_B += op.is_A_pred_B; is_B_pred_B += op.is_B_pred_B; return *this; } confusion_matrix_t& operator/=(const u64 val) { is_A_pred_A /= val; is_B_pred_A /= val; is_A_pred_B /= val; is_B_pred_B /= val; return *this; } friend confusion_matrix_t operator+(const confusion_matrix_t& op1, const confusion_matrix_t& op2) { confusion_matrix_t result = op1; result += op2; return result; } friend confusion_matrix_t operator/(const confusion_matrix_t& op1, const u64 val) { confusion_matrix_t result = op1; result /= val; return result; } [[nodiscard]] std::string pretty_print(const std::string& table_name = "Confusion Matrix") const; private: u64 is_A_pred_A = 0; u64 is_A_pred_B = 0; u64 is_B_pred_B = 0; u64 is_B_pred_A = 0; std::string name_A = "A"; std::string name_B = "B"; }; struct classifier_results_t : public confusion_matrix_t { public: [[nodiscard]] u64 get_hits() const { return hits; } [[nodiscard]] u64 get_size() const { return size; } [[nodiscard]] double get_percent_hit() const { return static_cast(hits) / static_cast(hits + misses); } void hit() { ++hits; } void miss() { ++misses; } private: u64 hits = 0; u64 misses = 0; }; struct population_stats { population_stats() = default; population_stats(const population_stats& copy): overall_fitness(copy.overall_fitness.load()), average_fitness(copy.average_fitness.load()), best_fitness(copy.best_fitness.load()), worst_fitness(copy.worst_fitness.load()) { normalized_fitness.reserve(copy.normalized_fitness.size()); for (auto v : copy.normalized_fitness) normalized_fitness.push_back(v); } population_stats(population_stats&& move) noexcept: overall_fitness(move.overall_fitness.load()), average_fitness(move.average_fitness.load()), best_fitness(move.best_fitness.load()), worst_fitness(move.worst_fitness.load()), normalized_fitness(std::move(move.normalized_fitness)) { move.overall_fitness = 0; move.average_fitness = 0; move.best_fitness = 0; move.worst_fitness = 0; } std::atomic overall_fitness = 0; std::atomic average_fitness = 0; std::atomic best_fitness = 0; std::atomic worst_fitness = 1; tracked_vector normalized_fitness{}; void clear() { overall_fitness = 0; average_fitness = 0; best_fitness = 0; worst_fitness = 0; normalized_fitness.clear(); } }; } #endif //BLT_GP_UTIL_STATISTICS_H