/* * <Short Description> * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. */ #include <blt/gp/program.h> #include <blt/profiling/profiler_v2.h> #include <blt/gp/tree.h> #include <blt/std/logging.h> #include <iostream> //static constexpr long SEED = 41912; static const unsigned long SEED = std::random_device()(); struct context { float x, y; }; std::array<context, 200> fitness_cases; blt::gp::prog_config_t config = blt::gp::prog_config_t() .set_initial_min_tree_size(2) .set_initial_max_tree_size(6) .set_elite_count(2) .set_crossover_chance(0.9) .set_mutation_chance(0.1) .set_reproduction_chance(0) .set_max_generations(50) .set_pop_size(5000) .set_thread_count(0); blt::gp::type_provider type_system; blt::gp::gp_program program{type_system, SEED, config}; blt::gp::operation_t add([](float a, float b) { return a + b; }, "add"); blt::gp::operation_t sub([](float a, float b) { return a - b; }, "sub"); blt::gp::operation_t mul([](float a, float b) { return a * b; }, "mul"); blt::gp::operation_t pro_div([](float a, float b) { return b == 0.0f ? 1.0f : a / b; }, "div"); blt::gp::operation_t op_sin([](float a) { return std::sin(a); }, "sin"); blt::gp::operation_t op_cos([](float a) { return std::cos(a); }, "cos"); blt::gp::operation_t op_exp([](float a) { return std::exp(a); }, "exp"); blt::gp::operation_t op_log([](float a) { return a == 0.0f ? 0.0f : std::log(a); }, "log"); blt::gp::operation_t lit([]() { return program.get_random().get_float(-320.0f, 320.0f); }, "lit"); blt::gp::operation_t op_x([](const context& context) { return context.x; }, "x"); constexpr auto fitness_function = [](blt::gp::tree_t& current_tree, blt::gp::fitness_t& fitness, blt::size_t) { constexpr double value_cutoff = 1.e15; for (auto& fitness_case : fitness_cases) { auto diff = std::abs(fitness_case.y - current_tree.get_evaluation_value<float>(&fitness_case)); if (diff < value_cutoff) { fitness.raw_fitness += diff; if (diff < 0.01) fitness.hits++; } else fitness.raw_fitness += value_cutoff; } fitness.standardized_fitness = fitness.raw_fitness; fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness)); return static_cast<blt::size_t>(fitness.hits) == fitness_cases.size(); }; float example_function(float x) { return x * x * x * x + x * x * x + x * x + x; } int main() { BLT_INFO("Starting BLT-GP Symbolic Regression Example"); BLT_START_INTERVAL("Symbolic Regression", "Main"); BLT_DEBUG("Setup Fitness cases"); for (auto& fitness_case : fitness_cases) { constexpr float range = 10; constexpr float half_range = range / 2.0; auto x = program.get_random().get_float(-half_range, half_range); auto y = example_function(x); fitness_case = {x, y}; } BLT_DEBUG("Setup Types and Operators"); type_system.register_type<float>(); blt::gp::operator_builder<context> builder{type_system}; builder.add_operator(add); builder.add_operator(sub); builder.add_operator(mul); builder.add_operator(pro_div); builder.add_operator(op_sin); builder.add_operator(op_cos); builder.add_operator(op_exp); builder.add_operator(op_log); builder.add_operator(lit, true); builder.add_operator(op_x); program.set_operations(builder.build()); BLT_DEBUG("Generate Initial Population"); program.generate_population(type_system.get_type<float>().id(), fitness_function); BLT_DEBUG("Begin Generation Loop"); while (!program.should_terminate()) { BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation()); BLT_START_INTERVAL("Symbolic Regression", "Gen"); auto sel = blt::gp::select_fitness_proportionate_t{}; program.create_next_generation(sel, sel, sel); BLT_END_INTERVAL("Symbolic Regression", "Gen"); BLT_TRACE("Move to next generation"); BLT_START_INTERVAL("Symbolic Regression", "Fitness"); program.next_generation(); BLT_TRACE("Evaluate Fitness"); program.evaluate_fitness(); BLT_END_INTERVAL("Symbolic Regression", "Fitness"); BLT_TRACE("----------------------------------------------"); std::cout << std::endl; } BLT_END_INTERVAL("Symbolic Regression", "Main"); auto best = program.get_best_individuals<3>(); BLT_INFO("Best approximations:"); for (auto& i_ref : best) { auto& i = i_ref.get(); BLT_DEBUG("Fitness: %lf, stand: %lf, raw: %lf", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness); i.tree.print(program, std::cout); std::cout << "\n"; } auto& stats = program.get_population_stats(); BLT_INFO("Stats:"); BLT_INFO("Average fitness: %lf", stats.average_fitness.load()); BLT_INFO("Best fitness: %lf", stats.best_fitness.load()); BLT_INFO("Worst fitness: %lf", stats.worst_fitness.load()); BLT_INFO("Overall fitness: %lf", stats.overall_fitness.load()); // TODO: make stats helper BLT_PRINT_PROFILE("Symbolic Regression", blt::PRINT_CYCLES | blt::PRINT_THREAD | blt::PRINT_WALL); return 0; }