#pragma once /* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef BLT_GP_TREE_H #define BLT_GP_TREE_H #include #include #include #include #include #include #include #include namespace blt::gp { struct op_container_t { op_container_t(blt::size_t type_size, operator_id id, bool is_value): type_size(type_size), id(id), is_value(is_value) {} blt::size_t type_size; operator_id id; bool is_value; }; class evaluation_context { public: explicit evaluation_context() = default; blt::gp::stack_allocator values; }; class tree_t { public: explicit tree_t(gp_program& program); tree_t(const tree_t& copy) = default; tree_t& operator=(const tree_t& copy) { if (this == ©) return *this; copy_fast(copy); return *this; } /** * This function copies the data from the provided tree, will attempt to reserve and copy in one step. * will avoid reallocation if enough space is already present. */ void copy_fast(const tree_t& copy) { if (this == ©) return; values.reserve(copy.values.internal_storage_size()); values.reset(); values.insert(copy.values); operations.clear(); operations.reserve(copy.operations.size()); operations.insert(operations.begin(), copy.operations.begin(), copy.operations.end()); } tree_t(tree_t&& move) = default; tree_t& operator=(tree_t&& move) = default; void clear(gp_program& program); struct child_t { blt::ptrdiff_t start; // one past the end blt::ptrdiff_t end; }; [[nodiscard]] inline tracked_vector& get_operations() { return operations; } [[nodiscard]] inline const tracked_vector& get_operations() const { return operations; } [[nodiscard]] inline blt::gp::stack_allocator& get_values() { return values; } [[nodiscard]] inline const blt::gp::stack_allocator& get_values() const { return values; } template || std::is_null_pointer_v), bool> = true> [[nodiscard]] evaluation_context& evaluate(const T& context) const { return (*func)(*this, const_cast(static_cast(&context))); } [[nodiscard]] evaluation_context& evaluate() const { return (*func)(*this, nullptr); } blt::size_t get_depth(gp_program& program); /** * Helper template for returning the result of the last evaluation */ template T get_evaluation_value(evaluation_context& context) const { return context.values.pop(); } /** * Helper template for returning the result of the last evaluation */ template T& get_evaluation_ref(evaluation_context& context) const { return context.values.from(0); } /** * Helper template for returning the result of evaluation (this calls it) */ template T get_evaluation_value(const Context& context) const { return evaluate(context).values.template pop(); } template T get_evaluation_value() const { return evaluate().values.pop(); } void print(gp_program& program, std::ostream& output, bool print_literals = true, bool pretty_indent = false, bool include_types = false) const; bool check(gp_program& program, void* context) const; void find_child_extends(gp_program& program, tracked_vector& vec, blt::size_t parent_node, blt::size_t argc) const; // places one past the end of the child. so it's [start, end) blt::ptrdiff_t find_endpoint(blt::gp::gp_program& program, blt::ptrdiff_t start) const; blt::ptrdiff_t find_parent(blt::gp::gp_program& program, blt::ptrdiff_t start) const; // valid for [begin, end) static blt::size_t total_value_bytes(detail::const_op_iter_t begin, detail::const_op_iter_t end) { blt::size_t total = 0; for (auto it = begin; it != end; it++) { if (it->is_value) total += stack_allocator::aligned_size(it->type_size); } return total; } [[nodiscard]] blt::size_t total_value_bytes(blt::size_t begin, blt::size_t end) const { return total_value_bytes(operations.begin() + static_cast(begin), operations.begin() + static_cast(end)); } [[nodiscard]] blt::size_t total_value_bytes(blt::size_t begin) const { return total_value_bytes(operations.begin() + static_cast(begin), operations.end()); } [[nodiscard]] blt::size_t total_value_bytes() const { return total_value_bytes(operations.begin(), operations.end()); } private: tracked_vector operations; blt::gp::stack_allocator values; detail::eval_func_t* func; }; struct fitness_t { double raw_fitness = 0; double standardized_fitness = 0; double adjusted_fitness = 0; blt::i64 hits = 0; }; struct individual_t { tree_t tree; fitness_t fitness; void copy_fast(const tree_t& copy) { // fast copy of the tree tree.copy_fast(copy); // reset fitness fitness = {}; } individual_t() = delete; explicit individual_t(tree_t&& tree): tree(std::move(tree)) {} explicit individual_t(const tree_t& tree): tree(tree) {} individual_t(const individual_t&) = default; individual_t(individual_t&&) = default; individual_t& operator=(const individual_t&) = delete; individual_t& operator=(individual_t&&) = default; }; struct population_stats { population_stats() = default; population_stats(const population_stats& copy): overall_fitness(copy.overall_fitness.load()), average_fitness(copy.average_fitness.load()), best_fitness(copy.best_fitness.load()), worst_fitness(copy.worst_fitness.load()) { normalized_fitness.reserve(copy.normalized_fitness.size()); for (auto v : copy.normalized_fitness) normalized_fitness.push_back(v); } population_stats(population_stats&& move) noexcept: overall_fitness(move.overall_fitness.load()), average_fitness(move.average_fitness.load()), best_fitness(move.best_fitness.load()), worst_fitness(move.worst_fitness.load()), normalized_fitness(std::move(move.normalized_fitness)) { move.overall_fitness = 0; move.average_fitness = 0; move.best_fitness = 0; move.worst_fitness = 0; } std::atomic overall_fitness = 0; std::atomic average_fitness = 0; std::atomic best_fitness = 0; std::atomic worst_fitness = 1; tracked_vector normalized_fitness{}; void clear() { overall_fitness = 0; average_fitness = 0; best_fitness = 0; worst_fitness = 0; normalized_fitness.clear(); } }; class population_t { public: class population_tree_iterator { public: population_tree_iterator(tracked_vector& ind, blt::size_t pos): ind(ind), pos(pos) {} auto begin() { return population_tree_iterator(ind, 0); } auto end() { return population_tree_iterator(ind, ind.size()); } population_tree_iterator operator++(int) { auto prev = pos++; return {ind, prev}; } population_tree_iterator operator++() { return {ind, ++pos}; } tree_t& operator*() { return ind[pos].tree; } tree_t& operator->() { return ind[pos].tree; } friend bool operator==(population_tree_iterator a, population_tree_iterator b) { return a.pos == b.pos; } friend bool operator!=(population_tree_iterator a, population_tree_iterator b) { return a.pos != b.pos; } private: tracked_vector& ind; blt::size_t pos; }; tracked_vector& get_individuals() { return individuals; } [[nodiscard]] const tracked_vector& get_individuals() const { return individuals; } population_tree_iterator for_each_tree() { return population_tree_iterator{individuals, 0}; } auto begin() { return individuals.begin(); } auto end() { return individuals.end(); } [[nodiscard]] auto begin() const { return individuals.begin(); } [[nodiscard]] auto end() const { return individuals.end(); } void clear() { individuals.clear(); } population_t() = default; population_t(const population_t&) = default; population_t(population_t&&) = default; population_t& operator=(const population_t&) = delete; population_t& operator=(population_t&&) = default; private: tracked_vector individuals; }; } #endif //BLT_GP_TREE_H