#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#ifndef BLT_GP_PROGRAM_H
#define BLT_GP_PROGRAM_H
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace blt::gp
{
struct argc_t
{
blt::u32 argc = 0;
blt::u32 argc_context = 0;
[[nodiscard]] bool is_terminal() const
{
return argc == 0;
}
};
struct operator_info
{
// types of the arguments
std::vector argument_types;
// return type of this operator
type_id return_type;
// number of arguments for this operator
argc_t argc;
// function to call this operator
detail::callable_t function;
// function used to transfer values between stacks
//detail::transfer_t transfer;
};
struct operator_storage
{
// indexed from return TYPE ID, returns index of operator
blt::expanding_buffer> terminals;
blt::expanding_buffer> non_terminals;
blt::expanding_buffer>> operators_ordered_terminals;
// indexed from OPERATOR ID (operator number)
blt::hashset_t static_types;
std::vector operators;
std::vector print_funcs;
std::vector> names;
};
template
class operator_builder
{
friend class gp_program;
friend class blt::gp::detail::operator_storage_test;
public:
explicit operator_builder(type_provider& system): system(system)
{}
template
operator_builder& add_operator(const operation_t& op, bool is_static = false)
{
auto return_type_id = system.get_type().id();
auto operator_id = blt::gp::operator_id(storage.operators.size());
operator_info info;
if constexpr (sizeof...(Args) > 0)
{
(add_non_context_argument>(info.argument_types), ...);
}
info.argc.argc_context = info.argc.argc = sizeof...(Args);
info.return_type = system.get_type().id();
((std::is_same_v, Context> ? info.argc.argc -= 1 : (blt::size_t) nullptr), ...);
auto& operator_list = info.argc.argc == 0 ? storage.terminals : storage.non_terminals;
operator_list[return_type_id].push_back(operator_id);
BLT_ASSERT(info.argc.argc_context - info.argc.argc <= 1 && "Cannot pass multiple context as arguments!");
info.function = op.template make_callable();
// info.transfer = [](std::optional> to, stack_allocator& from) {
//#if BLT_DEBUG_LEVEL >= 3
// auto value = from.pop();
// //BLT_TRACE_STREAM << value << "\n";
// if (to){
// to->get().push(value);
// }
//#else
// if (to)
// {
// to->get().push(from.pop());
// } else
// {
// from.pop();
// }
//#endif
//
// };
storage.operators.push_back(info);
storage.print_funcs.push_back([](std::ostream& out, stack_allocator& stack) {
out << stack.pop();
});
storage.names.push_back(op.get_name());
if (is_static)
storage.static_types.insert(operator_id);
return *this;
}
operator_storage&& build()
{
blt::hashset_t has_terminals;
for (const auto& v : blt::enumerate(storage.terminals))
{
if (!v.second.empty())
has_terminals.insert(v.first);
}
for (const auto& op_r : blt::enumerate(storage.non_terminals))
{
if (op_r.second.empty())
continue;
auto return_type = op_r.first;
std::vector> ordered_terminals;
for (const auto& op : op_r.second)
{
// count number of terminals
blt::size_t terminals = 0;
for (const auto& type : storage.operators[op].argument_types)
{
if (has_terminals.contains(type))
terminals++;
}
ordered_terminals.emplace_back(op, terminals);
}
bool found_terminal_inputs = false;
bool matches_argc = false;
for (const auto& terms : ordered_terminals)
{
if (terms.second == storage.operators[terms.first].argc.argc)
matches_argc = true;
if (terms.second != 0)
found_terminal_inputs = true;
if (matches_argc && found_terminal_inputs)
break;
}
if (!found_terminal_inputs)
BLT_ABORT(("Failed to find function with terminal arguments for return type " + std::to_string(return_type)).c_str());
if (!matches_argc)
{
BLT_ABORT(("Failed to find a function which purely translates types "
"(that is all input types are terminals) for return type " + std::to_string(return_type)).c_str());
}
std::sort(ordered_terminals.begin(), ordered_terminals.end(), [](const auto& a, const auto& b) {
return a.second > b.second;
});
auto first_size = *ordered_terminals.begin();
auto iter = ordered_terminals.begin();
while (++iter != ordered_terminals.end() && iter->second == first_size.second)
{}
ordered_terminals.erase(iter, ordered_terminals.end());
storage.operators_ordered_terminals[return_type] = ordered_terminals;
}
return std::move(storage);
}
private:
template
void add_non_context_argument(decltype(operator_info::argument_types)& types)
{
if constexpr (!std::is_same_v>)
{
types.push_back(system.get_type().id());
}
}
type_provider& system;
operator_storage storage;
};
class gp_program
{
public:
/**
* Note about context size: This is required as context is passed to every operator in the GP tree, this context will be provided by your
* call to one of the evaluator functions. This was the nicest way to provide this as C++ lacks reflection
*
* @param system type system to use in tree generation
* @param engine random engine to use throughout the program.
* @param context_size number of arguments which are always present as "context" to the GP system / operators
*/
explicit gp_program(type_provider& system, blt::u64 seed):
system(system), seed(seed)
{ create_threads(); }
explicit gp_program(type_provider& system, blt::u64 seed, prog_config_t config):
system(system), seed(seed), config(config)
{ create_threads(); }
template)>
void create_next_generation(Crossover&& crossover_selection, Mutation&& mutation_selection, Reproduction&& reproduction_selection,
CreationFunc& func = default_next_pop_creator)
{
// should already be empty
next_pop.clear();
crossover_selection.pre_process(*this, current_pop, current_stats);
mutation_selection.pre_process(*this, current_pop, current_stats);
reproduction_selection.pre_process(*this, current_pop, current_stats);
auto args = get_selector_args();
func(args, std::forward(crossover_selection), std::forward(mutation_selection),
std::forward(reproduction_selection));
}
void evaluate_fitness()
{
evaluate_fitness_internal();
}
/**
* takes in a reference to a function for the fitness evaluation function (must return a value convertable to double)
* The lambda must accept a tree for evaluation, and an index (current tree)
*
* tree_t& current_tree, blt::size_t index_of_tree
*
* Container must be concurrently accessible from multiple threads using operator[]
*
* NOTE: 0 is considered the best, in terms of standardized fitness
*/
template
void generate_population(type_id root_type, FitnessFunc& fitness_function, bool eval_fitness_now = true)
{
current_pop = config.pop_initializer.get().generate(
{*this, root_type, config.population_size, config.initial_min_tree_size, config.initial_max_tree_size});
if (config.threads == 1)
{
BLT_INFO("Starting with single thread variant!");
thread_execution_service = new std::function([this, &fitness_function](blt::size_t) {
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
{
fitness_function(ind.second.tree, ind.second.fitness, ind.first);
if (ind.second.fitness.adjusted_fitness > current_stats.best_fitness)
current_stats.best_fitness = ind.second.fitness.adjusted_fitness;
if (ind.second.fitness.adjusted_fitness < current_stats.worst_fitness)
current_stats.worst_fitness = ind.second.fitness.adjusted_fitness;
current_stats.overall_fitness = current_stats.overall_fitness + ind.second.fitness.adjusted_fitness;
}
});
} else
{
BLT_INFO("Starting thread execution service!");
std::scoped_lock lock(thread_helper.thread_function_control);
thread_execution_service = new std::function([this, &fitness_function](blt::size_t) {
thread_helper.barrier.wait();
if (thread_helper.evaluation_left > 0)
{
while (thread_helper.evaluation_left > 0)
{
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.evaluation_left.load(std::memory_order_relaxed);
do
{
size = std::min(end, config.evaluation_size);
begin = end - size;
} while (!thread_helper.evaluation_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
for (blt::size_t i = begin; i < end; i++)
{
auto& ind = current_pop.get_individuals()[i];
fitness_function(ind.tree, ind.fitness, i);
auto old_best = current_stats.best_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness > old_best &&
!current_stats.best_fitness.compare_exchange_weak(old_best, ind.fitness.adjusted_fitness,
std::memory_order_relaxed, std::memory_order_relaxed));
auto old_worst = current_stats.worst_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness < old_worst &&
!current_stats.worst_fitness.compare_exchange_weak(old_worst, ind.fitness.adjusted_fitness,
std::memory_order_relaxed, std::memory_order_relaxed));
auto old_overall = current_stats.overall_fitness.load(std::memory_order_relaxed);
while (!current_stats.overall_fitness.compare_exchange_weak(old_overall,
ind.fitness.adjusted_fitness + old_overall,
std::memory_order_relaxed,
std::memory_order_relaxed));
}
}
}
thread_helper.barrier.wait();
});
thread_helper.thread_function_condition.notify_all();
}
if (eval_fitness_now)
evaluate_fitness_internal();
}
void next_generation()
{
current_pop = std::move(next_pop);
current_generation++;
}
inline auto& get_current_pop()
{
return current_pop;
}
template
std::array get_best_indexes()
{
std::array arr;
std::vector> values;
values.reserve(current_pop.get_individuals().size());
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
values.emplace_back(ind.first, ind.second.fitness.adjusted_fitness);
std::sort(values.begin(), values.end(), [](const auto& a, const auto& b) {
return a.second > b.second;
});
for (blt::size_t i = 0; i < size; i++)
arr[i] = values[i].first;
return arr;
}
template
auto get_best_trees()
{
return convert_array, size>>(get_best_indexes(),
[this](auto&& arr, blt::size_t index) -> tree_t& {
return current_pop.get_individuals()[arr[index]].tree;
},
std::make_integer_sequence());
}
template
auto get_best_individuals()
{
return convert_array, size>>(get_best_indexes(),
[this](auto&& arr, blt::size_t index) -> individual& {
return current_pop.get_individuals()[arr[index]];
},
std::make_integer_sequence());
}
[[nodiscard]] bool should_terminate() const
{
return current_generation >= config.max_generations;
}
[[nodiscard]] bool should_thread_terminate() const
{
return should_terminate() || thread_helper.lifetime_over;
}
[[nodiscard]] random_t& get_random() const;
[[nodiscard]] inline type_provider& get_typesystem()
{
return system;
}
inline operator_id select_terminal(type_id id)
{
// we wanted a terminal, but could not find one, so we will select from a function that has a terminal
if (storage.terminals[id].empty())
return select_non_terminal_too_deep(id);
return get_random().select(storage.terminals[id]);
}
inline operator_id select_non_terminal(type_id id)
{
return get_random().select(storage.non_terminals[id]);
}
inline operator_id select_non_terminal_too_deep(type_id id)
{
return get_random().select(storage.operators_ordered_terminals[id]).first;
}
inline operator_info& get_operator_info(operator_id id)
{
return storage.operators[id];
}
inline detail::print_func_t& get_print_func(operator_id id)
{
return storage.print_funcs[id];
}
inline std::optional get_name(operator_id id)
{
return storage.names[id];
}
inline std::vector& get_type_terminals(type_id id)
{
return storage.terminals[id];
}
inline std::vector& get_type_non_terminals(type_id id)
{
return storage.non_terminals[id];
}
inline bool is_static(operator_id id)
{
return storage.static_types.contains(static_cast(id));
}
inline void set_operations(operator_storage&& op)
{
storage = std::move(op);
}
[[nodiscard]] inline auto get_current_generation() const
{
return current_generation.load();
}
[[nodiscard]] inline auto& get_population_stats()
{
return current_stats;
}
~gp_program()
{
thread_helper.lifetime_over = true;
thread_helper.barrier.notify_all();
for (auto& thread : thread_helper.threads)
{
if (thread->joinable())
thread->join();
}
auto* cpy = thread_execution_service.load(std::memory_order_acquire);
thread_execution_service = nullptr;
delete cpy;
}
private:
type_provider& system;
operator_storage storage;
population_t current_pop;
population_stats current_stats;
population_t next_pop;
std::atomic_uint64_t current_generation = 0;
blt::u64 seed;
prog_config_t config;
struct concurrency_storage
{
std::vector> threads;
std::mutex thread_function_control;
std::condition_variable thread_function_condition {};
std::atomic_uint64_t evaluation_left = 0;
std::atomic_bool lifetime_over = false;
blt::barrier barrier;
explicit concurrency_storage(blt::size_t threads): barrier(threads, lifetime_over)
{}
} thread_helper{config.threads};
// for convenience, shouldn't decrease performance too much
std::atomic*> thread_execution_service = nullptr;
inline selector_args get_selector_args()
{
return {*this, next_pop, current_pop, current_stats, config, get_random()};
}
template
inline Return convert_array(std::array&& arr, Accessor&& accessor,
std::integer_sequence)
{
return Return{accessor(arr, indexes)...};
}
void create_threads();
void evaluate_fitness_internal()
{
current_stats.clear();
if (config.threads != 1)
thread_helper.evaluation_left.store(current_pop.get_individuals().size(), std::memory_order_release);
(*thread_execution_service)(0);
current_stats.average_fitness = current_stats.overall_fitness / static_cast(config.population_size);
}
};
}
#endif //BLT_GP_PROGRAM_H