/* * This rice classification example uses data from the UC Irvine Machine Learning repository. * The data for this example can be found at: * https://archive.ics.uci.edu/dataset/545/rice+cammeo+and+osmancik * * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include "operations_common.h" #include "blt/fs/loader.h" static const unsigned long SEED = std::random_device()(); enum class rice_type_t { Cammeo, Osmancik }; struct rice_record { float area; float perimeter; float major_axis_length; float minor_axis_length; float eccentricity; float convex_area; float extent; rice_type_t type; }; std::vector training_cases; std::vector testing_cases; blt::gp::prog_config_t config = blt::gp::prog_config_t() .set_initial_min_tree_size(2) .set_initial_max_tree_size(6) .set_elite_count(2) .set_crossover_chance(0.9) .set_mutation_chance(0.1) .set_reproduction_chance(0) .set_max_generations(50) .set_pop_size(5000) .set_thread_count(0); blt::gp::type_provider type_system; blt::gp::gp_program program{type_system, SEED, config}; auto lit = blt::gp::operation_t([]() { return program.get_random().get_float(-32000.0f, 32000.0f); }, "lit").set_ephemeral(); blt::gp::operation_t op_area([](const rice_record& rice_data) { return rice_data.area; }, "area"); blt::gp::operation_t op_perimeter([](const rice_record& rice_data) { return rice_data.perimeter; }, "perimeter"); blt::gp::operation_t op_major_axis_length([](const rice_record& rice_data) { return rice_data.major_axis_length; }, "major_axis_length"); blt::gp::operation_t op_minor_axis_length([](const rice_record& rice_data) { return rice_data.minor_axis_length; }, "minor_axis_length"); blt::gp::operation_t op_eccentricity([](const rice_record& rice_data) { return rice_data.eccentricity; }, "eccentricity"); blt::gp::operation_t op_convex_area([](const rice_record& rice_data) { return rice_data.convex_area; }, "convex_area"); blt::gp::operation_t op_extent([](const rice_record& rice_data) { return rice_data.extent; }, "extent"); constexpr auto fitness_function = [](blt::gp::tree_t& current_tree, blt::gp::fitness_t& fitness, blt::size_t) { for (auto& training_case : training_cases) { auto v = current_tree.get_evaluation_value(&training_case); switch (training_case.type) { case rice_type_t::Cammeo: if (v >= 0) fitness.hits++; break; case rice_type_t::Osmancik: if (v < 0) fitness.hits++; break; } } fitness.raw_fitness = static_cast(fitness.hits) / static_cast(training_cases.size()); fitness.standardized_fitness = fitness.raw_fitness; fitness.adjusted_fitness = 1.0 - (1.0 / (1.0 + fitness.standardized_fitness)); return static_cast(fitness.hits) == training_cases.size(); }; void load_rice_data(std::string_view rice_file_path) { auto rice_file_data = blt::fs::getLinesFromFile(rice_file_path); size_t index = 0; while (!blt::string::contains(rice_file_data[index++], "@DATA")) {} std::vector c; std::vector o; for (std::string_view v : blt::itr_offset(rice_file_data, index)) { auto data = blt::string::split(v, ','); rice_record r{std::stof(data[0]), std::stof(data[1]), std::stof(data[2]), std::stof(data[3]), std::stof(data[4]), std::stof(data[5]), std::stof(data[6]), blt::string::contains(data[7], "Cammeo") ? rice_type_t::Cammeo : rice_type_t::Osmancik}; switch (r.type) { case rice_type_t::Cammeo: c.push_back(r); break; case rice_type_t::Osmancik: o.push_back(r); break; } } blt::size_t total_records = c.size() + o.size(); blt::size_t training_size = std::min(total_records / 3, 1000ul); for (blt::size_t i = 0; i < training_size; i++) { auto& random = program.get_random(); auto& vec = random.choice() ? c : o; auto pos = random.get_i64(0, static_cast(vec.size())); training_cases.push_back(vec[pos]); vec.erase(vec.begin() + pos); } testing_cases.insert(testing_cases.end(), c.begin(), c.end()); testing_cases.insert(testing_cases.end(), o.begin(), o.end()); std::shuffle(testing_cases.begin(), testing_cases.end(), program.get_random()); BLT_INFO("Created training set of size %ld, testing set is of size %ld", training_size, testing_cases.size()); } int main(int argc, const char** argv) { blt::arg_parse parser; parser.addArgument(blt::arg_builder{"-f", "--file"}.setHelp("File for rice data. Should be in .arff format.").setRequired().build()); auto args = parser.parse_args(argc, argv); if (!args.contains("file")) { BLT_WARN("Please provide path to file with -f or --file"); return 1; } auto rice_file_path = args.get("file"); BLT_INFO("Starting BLT-GP Rice Classification Example"); BLT_START_INTERVAL("Rice Classification", "Main"); BLT_DEBUG("Setup Fitness cases"); load_rice_data(rice_file_path); BLT_DEBUG("Setup Types and Operators"); type_system.register_type(); blt::gp::operator_builder builder{type_system}; program.set_operations(builder.build(add, sub, mul, pro_div, op_exp, op_log, lit, op_area, op_perimeter, op_major_axis_length, op_minor_axis_length, op_eccentricity, op_convex_area, op_extent)); BLT_DEBUG("Generate Initial Population"); auto sel = blt::gp::select_fitness_proportionate_t{}; program.generate_population(type_system.get_type().id(), fitness_function, sel, sel, sel); BLT_DEBUG("Begin Generation Loop"); while (!program.should_terminate()) { BLT_TRACE("------------{Begin Generation %ld}------------", program.get_current_generation()); BLT_TRACE("Creating next generation"); #ifdef BLT_TRACK_ALLOCATIONS auto gen_alloc = blt::gp::tracker.start_measurement(); #endif BLT_START_INTERVAL("Rice Classification", "Gen"); program.create_next_generation(); BLT_END_INTERVAL("Rice Classification", "Gen"); #ifdef BLT_TRACK_ALLOCATIONS blt::gp::tracker.stop_measurement(gen_alloc); BLT_TRACE("Generation Allocated %ld times with a total of %s", gen_alloc.getAllocationDifference(), blt::byte_convert_t(gen_alloc.getAllocatedByteDifference()).convert_to_nearest_type().to_pretty_string().c_str()); auto fitness_alloc = blt::gp::tracker.start_measurement(); #endif BLT_TRACE("Move to next generation"); BLT_START_INTERVAL("Rice Classification", "Fitness"); program.next_generation(); BLT_TRACE("Evaluate Fitness"); program.evaluate_fitness(); BLT_END_INTERVAL("Rice Classification", "Fitness"); #ifdef BLT_TRACK_ALLOCATIONS blt::gp::tracker.stop_measurement(fitness_alloc); BLT_TRACE("Fitness Allocated %ld times with a total of %s", fitness_alloc.getAllocationDifference(), blt::byte_convert_t(fitness_alloc.getAllocatedByteDifference()).convert_to_nearest_type().to_pretty_string().c_str()); #endif BLT_TRACE("----------------------------------------------"); std::cout << std::endl; } BLT_END_INTERVAL("Rice Classification", "Main"); auto best = program.get_best_individuals<3>(); BLT_INFO("Best approximations:"); for (auto& i_ref : best) { auto& i = i_ref.get(); struct match_t { blt::size_t cc = 0; blt::size_t co = 0; blt::size_t oo = 0; blt::size_t oc = 0; }; match_t match; for (auto& testing_case : testing_cases) { auto result = i.tree.get_evaluation_value(&testing_case); switch (testing_case.type) { case rice_type_t::Cammeo: if (result >= 0) match.cc++; // cammeo cammeo else if (result < 0) match.co++; // cammeo osmancik break; case rice_type_t::Osmancik: if (result < 0) match.oo++; // osmancik osmancik else if (result >= 0) match.oc++; // osmancik cammeo break; } } auto hits = match.cc + match.oo; auto size = testing_cases.size(); BLT_INFO("Hits %ld, Total Cases %ld, Percent Hit: %lf", hits, size, static_cast(hits) / static_cast(size) * 100); BLT_DEBUG("Cammeo Cammeo: %ld", match.cc); BLT_DEBUG("Cammeo Osmancik: %ld", match.co); BLT_DEBUG("Osmancik Osmancik: %ld", match.oo); BLT_DEBUG("Osmancik Cammeo: %ld", match.oc); BLT_DEBUG("Fitness: %lf, stand: %lf, raw: %lf", i.fitness.adjusted_fitness, i.fitness.standardized_fitness, i.fitness.raw_fitness); i.tree.print(program, std::cout); std::cout << "\n"; } auto& stats = program.get_population_stats(); BLT_INFO("Stats:"); BLT_INFO("Average fitness: %lf", stats.average_fitness.load()); BLT_INFO("Best fitness: %lf", stats.best_fitness.load()); BLT_INFO("Worst fitness: %lf", stats.worst_fitness.load()); BLT_INFO("Overall fitness: %lf", stats.overall_fitness.load()); // TODO: make stats helper BLT_PRINT_PROFILE("Rice Classification", blt::PRINT_CYCLES | blt::PRINT_THREAD | blt::PRINT_WALL); #ifdef BLT_TRACK_ALLOCATIONS BLT_TRACE("Total Allocations: %ld times with a total of %s", blt::gp::tracker.getAllocations(), blt::byte_convert_t(blt::gp::tracker.getAllocatedBytes()).convert_to_nearest_type().to_pretty_string().c_str()); #endif return 0; }