#pragma once /* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef BLT_GP_PROGRAM_H #define BLT_GP_PROGRAM_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace blt::gp { static constexpr blt::size_t NONE_T = 0x0; static constexpr blt::size_t STATIC_T = 0x1; static constexpr blt::size_t TERMINAL_T = 0x2; struct argc_t { blt::size_t argc = 0; blt::size_t argc_context = 0; }; struct operator_info { }; struct operator_storage { // indexed from return TYPE ID, returns index of operator blt::expanding_buffer> terminals; blt::expanding_buffer> non_terminals; blt::expanding_buffer>> operators_ordered_terminals; // indexed from OPERATOR ID (operator number) blt::expanding_buffer> argument_types; blt::expanding_buffer operator_argc; blt::hashset_t static_types; std::vector operators; std::vector transfer_funcs; }; template class operator_builder { friend class gp_program; friend class blt::gp::detail::operator_storage_test; public: explicit operator_builder(type_provider& system): system(system) {} template operator_builder& add_operator(const operation_t& op, bool is_static = false) { auto return_type_id = system.get_type().id(); auto operator_id = blt::gp::operator_id(storage.operators.size()); auto& operator_list = op.get_argc() == 0 ? storage.terminals : storage.non_terminals; operator_list[return_type_id].push_back(operator_id); if constexpr (sizeof...(Args) > 0) { (add_non_context_argument(operator_id), ...); } argc_t argc; argc.argc_context = argc.argc = sizeof...(Args); ((std::is_same_v, Context> ? argc.argc -= 1 : (blt::size_t) nullptr), ...); BLT_ASSERT(argc.argc_context - argc.argc <= 1 && "Cannot pass multiple context as arguments!"); storage.operator_argc[operator_id] = argc; storage.operators.push_back(op.template make_callable()); storage.transfer_funcs.push_back([](stack_allocator& to, stack_allocator& from, blt::ptrdiff_t offset) { if (offset < 0) to.push(from.pop()); else to.push(from.from(offset)); }); if (is_static) storage.static_types.insert(operator_id); return *this; } operator_storage&& build() { blt::hashset_t has_terminals; for (const auto& v : blt::enumerate(storage.terminals)) { if (!v.second.empty()) has_terminals.insert(v.first); } for (const auto& op_r : blt::enumerate(storage.non_terminals)) { if (op_r.second.empty()) continue; auto return_type = op_r.first; std::vector> ordered_terminals; for (const auto& op : op_r.second) { // count number of terminals blt::size_t terminals = 0; for (const auto& type : storage.argument_types[op]) { if (has_terminals.contains(type.id())) terminals++; } ordered_terminals.emplace_back(op, terminals); } bool found_terminal_inputs = false; bool matches_argc = false; for (const auto& terms : ordered_terminals) { if (terms.second == storage.operator_argc[terms.first].argc) matches_argc = true; if (terms.second != 0) found_terminal_inputs = true; if (matches_argc && found_terminal_inputs) break; } if (!found_terminal_inputs) BLT_ABORT(("Failed to find function with terminal arguments for return type " + std::to_string(return_type)).c_str()); if (!matches_argc) { BLT_ABORT(("Failed to find a function which purely translates types " "(that is all input types are terminals) for return type " + std::to_string(return_type)).c_str()); } std::sort(ordered_terminals.begin(), ordered_terminals.end(), [](const auto& a, const auto& b) { return a.second > b.second; }); auto first_size = *ordered_terminals.begin(); auto iter = ordered_terminals.begin(); while (++iter != ordered_terminals.end() && iter->second == first_size.second) {} ordered_terminals.erase(iter, ordered_terminals.end()); storage.operators_ordered_terminals[return_type] = ordered_terminals; } return std::move(storage); } private: template void add_non_context_argument(blt::gp::operator_id operator_id) { if constexpr (!std::is_same_v>) { storage.argument_types[operator_id].push_back(system.get_type()); } } type_provider& system; operator_storage storage; }; class gp_program { public: /** * Note about context size: This is required as context is passed to every operator in the GP tree, this context will be provided by your * call to one of the evaluator functions. This was the nicest way to provide this as C++ lacks reflection * * @param system type system to use in tree generation * @param engine random engine to use throughout the program. TODO replace this with something better * @param context_size number of arguments which are always present as "context" to the GP system / operators */ explicit gp_program(type_provider& system, std::mt19937_64 engine): system(system), engine(engine) {} void generate_tree(); [[nodiscard]] inline std::mt19937_64& get_random() { return engine; } [[nodiscard]] inline bool choice() { static std::uniform_int_distribution dist(0, 1); return dist(engine); } /** * @param cutoff precent in floating point form chance of the event happening. * @return */ [[nodiscard]] inline bool choice(double cutoff) { static std::uniform_real_distribution dist(0.0, 1.0); return dist(engine) < cutoff; } [[nodiscard]] inline type_provider& get_typesystem() { return system; } inline operator_id select_terminal(type_id id) { // we wanted a terminal, but could not find one, so we will select from a function that has a terminal if (storage.terminals[id].empty()) return select_non_terminal_too_deep(id); std::uniform_int_distribution dist(0, storage.terminals[id].size() - 1); return storage.terminals[id][dist(engine)]; } inline operator_id select_non_terminal(type_id id) { std::uniform_int_distribution dist(0, storage.non_terminals[id].size() - 1); return storage.non_terminals[id][dist(engine)]; } inline operator_id select_non_terminal_too_deep(type_id id) { std::uniform_int_distribution dist(0, storage.operators_ordered_terminals[id].size() - 1); return storage.operators_ordered_terminals[id][dist(engine)].first; } inline std::vector& get_argument_types(operator_id id) { return storage.argument_types[id]; } inline std::vector& get_type_terminals(type_id id) { return storage.terminals[id]; } inline std::vector& get_type_non_terminals(type_id id) { return storage.non_terminals[id]; } inline argc_t get_argc(operator_id id) { return storage.operator_argc[id]; } inline detail::callable_t& get_operation(operator_id id) { return storage.operators[id]; } inline detail::transfer_t& get_transfer_func(operator_id id) { return storage.transfer_funcs[id]; } inline bool is_static(operator_id id) { return storage.static_types.contains(static_cast(id)); } inline void set_operations(operator_storage&& op) { storage = std::move(op); } private: type_provider& system; blt::gp::stack_allocator alloc; operator_storage storage; std::mt19937_64 engine; }; } #endif //BLT_GP_PROGRAM_H