#pragma once /* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. */ #ifndef BLT_GP_FWDECL_H #define BLT_GP_FWDECL_H #include <functional> #include <blt/std/logging.h> #include <blt/std/types.h> #include <blt/gp/stats.h> #include <ostream> #include <cstdlib> #include <mutex> #include <atomic> #include <blt/std/mmap.h> namespace blt::gp { #ifdef BLT_TRACK_ALLOCATIONS inline allocation_tracker_t tracker; // population gen specifics inline call_tracker_t crossover_calls; inline call_tracker_t mutation_calls; inline call_tracker_t reproduction_calls; inline call_tracker_t crossover_allocations; inline call_tracker_t mutation_allocations; inline call_tracker_t reproduction_allocations; // for evaluating fitness inline call_tracker_t evaluation_calls; inline call_tracker_t evaluation_allocations; #endif class gp_program; class type; struct operator_id; struct type_id; class type_provider; struct op_container_t; class evaluation_context; class tree_t; struct individual_t; class population_t; class tree_generator_t; class grow_generator_t; class full_generator_t; class stack_allocator; template<typename T> class tracked_allocator_t; #ifdef BLT_TRACK_ALLOCATIONS template<typename T> using tracked_vector = std::vector<T, tracked_allocator_t<T>>; #else template<typename T> using tracked_vector = std::vector<T>; #endif // using operation_vector_t = tracked_vector<op_container_t>; // using individual_vector_t = tracked_vector<individual_t, tracked_allocator_t<individual_t>>; // using tree_vector_t = tracked_vector<tree_t>; class aligned_allocator { public: void* allocate(blt::size_t bytes) // NOLINT { #ifdef BLT_TRACK_ALLOCATIONS tracker.allocate(bytes); // std::cout << "Hey our aligned allocator allocated " << bytes << " bytes!\n"; #endif return std::aligned_alloc(8, bytes); } void deallocate(void* ptr, blt::size_t bytes) // NOLINT { if (ptr == nullptr) return; #ifdef BLT_TRACK_ALLOCATIONS tracker.deallocate(bytes); // std::cout << "[Hey our aligned allocator deallocated " << bytes << " bytes!]\n"; #else (void) bytes; #endif std::free(ptr); } }; template<typename Alloc = blt::mmap_huge_allocator> class variable_bump_allocator { public: explicit variable_bump_allocator(blt::size_t default_block_size = BLT_2MB_SIZE): default_block_size(default_block_size) {} void* allocate(blt::size_t bytes) { #ifdef BLT_TRACK_ALLOCATIONS tracker.allocate(bytes); #endif std::scoped_lock lock(mutex); if (head == nullptr || head->remaining_bytes_in_block() < static_cast<blt::ptrdiff_t>(bytes)) { push_block(bytes); } auto ptr = head->metadata.offset; head->metadata.offset += bytes; ++head->metadata.allocated_objects; return ptr; } void deallocate(void* ptr, blt::size_t bytes) { if (ptr == nullptr) return; #ifdef BLT_TRACK_ALLOCATIONS tracker.deallocate(bytes); #else (void) bytes; #endif std::scoped_lock lock(mutex); block_t* blk = to_block(ptr); --blk->metadata.allocated_objects; if (blk->metadata.allocated_objects == 0) { if (blk->metadata.has_deallocated) alloc.deallocate(blk, blk->metadata.size); else { if (head == blk) head = head->metadata.next; else { auto prev = head; auto next = head->metadata.next; while (next != blk) { prev = next; next = next->metadata.next; } prev->metadata.next = next->metadata.next; } deallocated_blocks.push_back(blk); } } } ~variable_bump_allocator() { std::scoped_lock lock(mutex); for (auto* blk : deallocated_blocks) { alloc.deallocate(blk, blk->metadata.size); } auto cur = head; while (cur != nullptr) { auto* ptr = cur; ptr->metadata.has_deallocated = true; cur = cur->metadata.next; } head = nullptr; } private: struct block_t { struct block_metadata_t { blt::size_t size; blt::size_t allocated_objects : 63; bool has_deallocated : 1; block_t* next; blt::u8* offset; } metadata; blt::u8 buffer[8]{}; explicit block_t(blt::size_t size): metadata{size, 0, false, nullptr, nullptr} { reset(); } void reset() { metadata.offset = buffer; metadata.allocated_objects = 0; metadata.next = nullptr; } [[nodiscard]] blt::ptrdiff_t storage_size() const noexcept { return static_cast<blt::ptrdiff_t>(metadata.size - sizeof(typename block_t::block_metadata_t)); } [[nodiscard]] blt::ptrdiff_t used_bytes_in_block() const noexcept { return static_cast<blt::ptrdiff_t>(metadata.offset - buffer); } [[nodiscard]] blt::ptrdiff_t remaining_bytes_in_block() const noexcept { return storage_size() - used_bytes_in_block(); } }; static inline block_t* to_block(void* p) { return reinterpret_cast<block_t*>(reinterpret_cast<std::uintptr_t>(p) & static_cast<std::uintptr_t>(~(BLT_2MB_SIZE - 1))); } void push_block(blt::size_t bytes) { auto blk = allocate_block(bytes); BLT_TRACE("Allocated block %p", blk); blk->metadata.next = head; head = blk; } inline block_t* allocate_block(blt::size_t bytes) { if (!deallocated_blocks.empty()) { block_t* blk = deallocated_blocks.back(); deallocated_blocks.pop_back(); blk->reset(); return blk; } auto size = align_size_to(bytes + sizeof(typename block_t::block_metadata_t), default_block_size); auto* ptr = static_cast<block_t*>(alloc.allocate(size, blt::huge_page_t::BLT_2MB_PAGE)); new(ptr) block_t{size}; return ptr; } private: block_t* head = nullptr; std::mutex mutex; std::vector<block_t*> deallocated_blocks; blt::size_t default_block_size; Alloc alloc; }; template<typename T> class tracked_allocator_t { public: using value_type = T; using reference = T&; using const_reference = const T&; using pointer = T*; using const_pointer = const T*; using void_pointer = void*; using const_void_pointer = const void*; using difference_type = blt::ptrdiff_t; using size_type = blt::size_t; template<class U> struct rebind { typedef tracked_allocator_t<U> other; }; pointer allocate(size_type n) { #ifdef BLT_TRACK_ALLOCATIONS tracker.allocate(n * sizeof(T)); // std::cout << "Hey our tracked allocator allocated " << (n * sizeof(T)) << " bytes!\n"; #endif return static_cast<pointer>(std::malloc(n * sizeof(T))); } pointer allocate(size_type n, const_void_pointer) { return allocate(n); } void deallocate(pointer p, size_type n) { #ifdef BLT_TRACK_ALLOCATIONS tracker.deallocate(n * sizeof(T)); // std::cout << "[Hey our tracked allocator deallocated " << (n * sizeof(T)) << " bytes!]\n"; #else (void) n; #endif std::free(p); } template<class U, class... Args> void construct(U* p, Args&& ... args) { new(p) T(std::forward<Args>(args)...); } template<class U> void destroy(U* p) { p->~T(); } [[nodiscard]] size_type max_size() const noexcept { return std::numeric_limits<size_type>::max(); } }; template<class T1, class T2> inline static bool operator==(const tracked_allocator_t<T1>& lhs, const tracked_allocator_t<T2>& rhs) noexcept { return &lhs == &rhs; } template<class T1, class T2> inline static bool operator!=(const tracked_allocator_t<T1>& lhs, const tracked_allocator_t<T2>& rhs) noexcept { return &lhs != &rhs; } namespace detail { class operator_storage_test; // context*, read stack, write stack using operator_func_t = std::function<void(void*, stack_allocator&, stack_allocator&)>; using eval_func_t = std::function<evaluation_context&(const tree_t& tree, void* context)>; // debug function, using print_func_t = std::function<void(std::ostream&, stack_allocator&)>; enum class destroy_t { ARGS, RETURN }; using destroy_func_t = std::function<void(destroy_t, stack_allocator&)>; using const_op_iter_t = tracked_vector<op_container_t>::const_iterator; using op_iter_t = tracked_vector<op_container_t>::iterator; } } #endif //BLT_GP_FWDECL_H