blt-gp/src/transformers.cpp

737 lines
38 KiB
C++

/*
* <Short Description>
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <blt/gp/transformers.h>
#include <blt/gp/program.h>
#include <blt/std/ranges.h>
#include <blt/std/utility.h>
#include <algorithm>
#include <blt/std/memory.h>
#include <blt/profiling/profiler_v2.h>
#include <random>
namespace blt::gp
{
grow_generator_t grow_generator;
inline tree_t& get_static_tree_tl(gp_program& program)
{
static thread_local tree_t new_tree{program};
new_tree.clear(program);
return new_tree;
}
inline blt::size_t accumulate_type_sizes(detail::op_iter_t begin, detail::op_iter_t end)
{
blt::size_t total = 0;
for (auto it = begin; it != end; ++it)
{
if (it->is_value)
total += stack_allocator::aligned_size(it->type_size);
}
return total;
}
template<typename>
blt::u8* get_thread_pointer_for_size(blt::size_t bytes)
{
static thread_local blt::expanding_buffer<blt::u8> buffer;
if (bytes > buffer.size())
buffer.resize(bytes);
return buffer.data();
}
mutation_t::config_t::config_t(): generator(grow_generator)
{}
bool crossover_t::apply(gp_program& program, const tree_t& p1, const tree_t& p2, tree_t& c1, tree_t& c2) // NOLINT
{
c1.copy_fast(p1);
c2.copy_fast(p2);
auto& c1_ops = c1.get_operations();
auto& c2_ops = c2.get_operations();
if (c1_ops.size() < 5 || c2_ops.size() < 5)
return false;
auto point = get_crossover_point(program, p1, p2);
if (!point)
return false;
auto crossover_point_begin_itr = c1_ops.begin() + point->p1_crossover_point;
auto crossover_point_end_itr = c1_ops.begin() + c1.find_endpoint(program, point->p1_crossover_point);
auto found_point_begin_itr = c2_ops.begin() + point->p2_crossover_point;
auto found_point_end_itr = c2_ops.begin() + c2.find_endpoint(program, point->p2_crossover_point);
stack_allocator& c1_stack = c1.get_values();
stack_allocator& c2_stack = c2.get_values();
// we have to make a copy because we will modify the underlying storage.
static thread_local tracked_vector<op_container_t> c1_operators;
static thread_local tracked_vector<op_container_t> c2_operators;
c1_operators.clear();
c2_operators.clear();
for (const auto& op : blt::iterate(crossover_point_begin_itr, crossover_point_end_itr))
c1_operators.push_back(op);
for (const auto& op : blt::iterate(found_point_begin_itr, found_point_end_itr))
c2_operators.push_back(op);
blt::size_t c1_stack_after_bytes = accumulate_type_sizes(crossover_point_end_itr, c1_ops.end());
blt::size_t c1_stack_for_bytes = accumulate_type_sizes(crossover_point_begin_itr, crossover_point_end_itr);
blt::size_t c2_stack_after_bytes = accumulate_type_sizes(found_point_end_itr, c2_ops.end());
blt::size_t c2_stack_for_bytes = accumulate_type_sizes(found_point_begin_itr, found_point_end_itr);
auto c1_total = static_cast<blt::ptrdiff_t>(c1_stack_after_bytes + c1_stack_for_bytes);
auto c2_total = static_cast<blt::ptrdiff_t>(c2_stack_after_bytes + c2_stack_for_bytes);
auto copy_ptr_c1 = get_thread_pointer_for_size<struct c1_t>(c1_total);
auto copy_ptr_c2 = get_thread_pointer_for_size<struct c2_t>(c2_total);
c1_stack.reserve(c1_stack.bytes_in_head() - c1_stack_for_bytes + c2_stack_for_bytes);
c2_stack.reserve(c2_stack.bytes_in_head() - c2_stack_for_bytes + c1_stack_for_bytes);
c1_stack.copy_to(copy_ptr_c1, c1_total);
c1_stack.pop_bytes(c1_total);
c2_stack.copy_to(copy_ptr_c2, c2_total);
c2_stack.pop_bytes(c2_total);
c2_stack.copy_from(copy_ptr_c1, c1_stack_for_bytes);
c2_stack.copy_from(copy_ptr_c2 + c2_stack_for_bytes, c2_stack_after_bytes);
c1_stack.copy_from(copy_ptr_c2, c2_stack_for_bytes);
c1_stack.copy_from(copy_ptr_c1 + c1_stack_for_bytes, c1_stack_after_bytes);
// now swap the operators
auto insert_point_c1 = crossover_point_begin_itr - 1;
auto insert_point_c2 = found_point_begin_itr - 1;
// invalidates [begin, end()) so the insert points should be fine
c1_ops.erase(crossover_point_begin_itr, crossover_point_end_itr);
c2_ops.erase(found_point_begin_itr, found_point_end_itr);
c1_ops.insert(++insert_point_c1, c2_operators.begin(), c2_operators.end());
c2_ops.insert(++insert_point_c2, c1_operators.begin(), c1_operators.end());
#if BLT_DEBUG_LEVEL >= 2
blt::size_t c1_found_bytes = c1.get_values().size().total_used_bytes;
blt::size_t c2_found_bytes = c2.get_values().size().total_used_bytes;
blt::size_t c1_expected_bytes = std::accumulate(result.child1.get_operations().begin(), result.child1.get_operations().end(), 0ul,
[](const auto& v1, const auto& v2) {
if (v2.is_value)
return v1 + stack_allocator::aligned_size(v2.type_size);
return v1;
});
blt::size_t c2_expected_bytes = std::accumulate(result.child2.get_operations().begin(), result.child2.get_operations().end(), 0ul,
[](const auto& v1, const auto& v2) {
if (v2.is_value)
return v1 + stack_allocator::aligned_size(v2.type_size);
return v1;
});
if (c1_found_bytes != c1_expected_bytes || c2_found_bytes != c2_expected_bytes)
{
BLT_WARN("C1 Found bytes %ld vs Expected Bytes %ld", c1_found_bytes, c1_expected_bytes);
BLT_WARN("C2 Found bytes %ld vs Expected Bytes %ld", c2_found_bytes, c2_expected_bytes);
BLT_ABORT("Amount of bytes in stack doesn't match the number of bytes expected for the operations");
}
#endif
return true;
}
std::optional<crossover_t::crossover_point_t> crossover_t::get_crossover_point(gp_program& program, const tree_t& c1,
const tree_t& c2) const
{
auto& c1_ops = c1.get_operations();
auto& c2_ops = c2.get_operations();
blt::size_t crossover_point = program.get_random().get_size_t(1ul, c1_ops.size());
while (config.avoid_terminals && program.get_operator_info(c1_ops[crossover_point].id).argc.is_terminal())
crossover_point = program.get_random().get_size_t(1ul, c1_ops.size());
blt::size_t attempted_point = 0;
const auto& crossover_point_type = program.get_operator_info(c1_ops[crossover_point].id);
operator_info_t* attempted_point_type = nullptr;
blt::size_t counter = 0;
do
{
if (counter >= config.max_crossover_tries)
{
if (config.should_crossover_try_forward)
{
bool found = false;
for (auto i = attempted_point + 1; i < c2_ops.size(); i++)
{
auto* info = &program.get_operator_info(c2_ops[i].id);
if (info->return_type == crossover_point_type.return_type)
{
if (config.avoid_terminals && info->argc.is_terminal())
continue;
attempted_point = i;
attempted_point_type = info;
found = true;
break;
}
}
if (!found)
return {};
}
// should we try again over the whole tree? probably not.
return {};
} else
{
attempted_point = program.get_random().get_size_t(1ul, c2_ops.size());
attempted_point_type = &program.get_operator_info(c2_ops[attempted_point].id);
if (config.avoid_terminals && attempted_point_type->argc.is_terminal())
continue;
if (crossover_point_type.return_type == attempted_point_type->return_type)
break;
counter++;
}
} while (true);
return crossover_point_t{static_cast<blt::ptrdiff_t>(crossover_point), static_cast<blt::ptrdiff_t>(attempted_point)};
}
bool mutation_t::apply(gp_program& program, const tree_t& p, tree_t& c)
{
c.copy_fast(p);
mutate_point(program, c, program.get_random().get_size_t(0ul, c.get_operations().size()));
return true;
}
blt::size_t mutation_t::mutate_point(gp_program& program, tree_t& c, blt::size_t node)
{
auto& ops_r = c.get_operations();
auto& vals_r = c.get_values();
auto begin_point = static_cast<blt::ptrdiff_t>(node);
auto end_point = c.find_endpoint(program, begin_point);
auto begin_operator_id = ops_r[begin_point].id;
const auto& type_info = program.get_operator_info(begin_operator_id);
auto begin_itr = ops_r.begin() + begin_point;
auto end_itr = ops_r.begin() + end_point;
auto& new_tree = get_static_tree_tl(program);
config.generator.get().generate(new_tree, {program, type_info.return_type, config.replacement_min_depth, config.replacement_max_depth});
auto& new_ops_r = new_tree.get_operations();
auto& new_vals_r = new_tree.get_values();
blt::size_t total_bytes_after = accumulate_type_sizes(end_itr, ops_r.end());
auto* stack_after_data = get_thread_pointer_for_size<struct mutation>(total_bytes_after);
// make a copy of any stack data after the mutation point / children.
vals_r.copy_to(stack_after_data, total_bytes_after);
// remove the bytes of the data after the mutation point and the data for the children of the mutation node.
vals_r.pop_bytes(static_cast<blt::ptrdiff_t>(total_bytes_after + accumulate_type_sizes(begin_itr, end_itr)));
// insert the new tree then move back the data from after the original mutation point.
vals_r.insert(new_vals_r);
vals_r.copy_from(stack_after_data, total_bytes_after);
auto before = begin_itr - 1;
ops_r.erase(begin_itr, end_itr);
ops_r.insert(++before, new_ops_r.begin(), new_ops_r.end());
// this will check to make sure that the tree is in a correct and executable state. it requires that the evaluation is context free!
#if BLT_DEBUG_LEVEL >= 2
// BLT_ASSERT(new_vals_r.empty());
//BLT_ASSERT(stack_after.empty());
blt::size_t bytes_expected = 0;
auto bytes_size = vals_r.size().total_used_bytes;
for (const auto& op : c.get_operations())
{
if (op.is_value)
bytes_expected += stack_allocator::aligned_size(op.type_size);
}
if (bytes_expected != bytes_size)
{
BLT_WARN_STREAM << "Stack state: " << vals_r.size() << "\n";
BLT_WARN("Child tree bytes %ld vs expected %ld, difference: %ld", bytes_size, bytes_expected,
static_cast<blt::ptrdiff_t>(bytes_expected) - static_cast<blt::ptrdiff_t>(bytes_size));
BLT_TRACE("Total bytes after: %ld", total_bytes_after);
BLT_ABORT("Amount of bytes in stack doesn't match the number of bytes expected for the operations");
}
auto copy = c;
try
{
auto result = copy.evaluate(nullptr);
blt::black_box(result);
} catch (...)
{
std::cout << "This occurred at point " << begin_point << " ending at (old) " << end_point << "\n";
std::cout << "our root type is " << ops_r[begin_point].id << " with size " << stack_allocator::aligned_size(ops_r[begin_point].type_size)
<< "\n";
std::cout << "now Named: " << (program.get_name(ops_r[begin_point].id) ? *program.get_name(ops_r[begin_point].id) : "Unnamed") << "\n";
std::cout << "Was named: " << (program.get_name(begin_operator_id) ? *program.get_name(begin_operator_id) : "Unnamed") << "\n";
//std::cout << "Parent:" << std::endl;
//p.print(program, std::cout, false, true);
std::cout << "Child:" << std::endl;
c.print(program, std::cout, false, true);
std::cout << std::endl;
c.print(program, std::cout, true, true);
std::cout << std::endl;
throw std::exception();
}
#endif
return begin_point + new_ops_r.size();
}
bool advanced_mutation_t::apply(gp_program& program, const tree_t& p, tree_t& c)
{
// child tree
c.copy_fast(p);
auto& ops = c.get_operations();
auto& vals = c.get_values();
for (blt::size_t c_node = 0; c_node < ops.size(); c_node++)
{
double node_mutation_chance = per_node_mutation_chance / static_cast<double>(ops.size());
if (!program.get_random().choice(node_mutation_chance))
continue;
#if BLT_DEBUG_LEVEL >= 2
tree_t c_copy = c;
#endif
// select an operator to apply
auto selected_point = static_cast<blt::i32>(mutation_operator::COPY);
auto choice = program.get_random().get_double();
for (const auto& [index, value] : blt::enumerate(mutation_operator_chances))
{
if (index == 0)
{
if (choice <= value)
{
selected_point = static_cast<blt::i32>(index);
break;
}
} else
{
if (choice > mutation_operator_chances[index - 1] && choice <= value)
{
selected_point = static_cast<blt::i32>(index);
break;
}
}
}
switch (static_cast<mutation_operator>(selected_point))
{
case mutation_operator::EXPRESSION:
c_node += mutate_point(program, c, c_node);
break;
case mutation_operator::ADJUST:
{
// this is going to be evil >:3
const auto& node = ops[c_node];
if (!node.is_value)
{
auto& current_func_info = program.get_operator_info(ops[c_node].id);
operator_id random_replacement = program.get_random().select(
program.get_type_non_terminals(current_func_info.return_type.id));
auto& replacement_func_info = program.get_operator_info(random_replacement);
// cache memory used for offset data.
thread_local static tracked_vector<tree_t::child_t> children_data;
children_data.clear();
c.find_child_extends(program, children_data, c_node, current_func_info.argument_types.size());
for (const auto& [index, val] : blt::enumerate(replacement_func_info.argument_types))
{
// need to generate replacement.
if (index < current_func_info.argument_types.size() && val.id != current_func_info.argument_types[index].id)
{
// TODO: new config?
auto& tree = get_static_tree_tl(program);
config.generator.get().generate(tree,
{program, val.id, config.replacement_min_depth, config.replacement_max_depth});
auto& child = children_data[children_data.size() - 1 - index];
blt::size_t total_bytes_for = c.total_value_bytes(child.start, child.end);
blt::size_t total_bytes_after = c.total_value_bytes(child.end);
auto after_ptr = get_thread_pointer_for_size<struct mutation_func>(total_bytes_after);
vals.copy_to(after_ptr, total_bytes_after);
vals.pop_bytes(static_cast<blt::ptrdiff_t>(total_bytes_after + total_bytes_for));
blt::size_t total_child_bytes = tree.total_value_bytes();
vals.copy_from(tree.get_values(), total_child_bytes);
vals.copy_from(after_ptr, total_bytes_after);
ops.erase(ops.begin() + child.start, ops.begin() + child.end);
ops.insert(ops.begin() + child.start, tree.get_operations().begin(), tree.get_operations().end());
// shift over everybody after.
if (index > 0)
{
// don't need to update if the index is the last
for (auto& new_child : blt::iterate(children_data.end() - static_cast<blt::ptrdiff_t>(index),
children_data.end()))
{
// remove the old tree size, then add the new tree size to get the correct positions.
new_child.start =
new_child.start - (child.end - child.start) +
static_cast<blt::ptrdiff_t>(tree.get_operations().size());
new_child.end =
new_child.end - (child.end - child.start) + static_cast<blt::ptrdiff_t>(tree.get_operations().size());
}
}
child.end = static_cast<blt::ptrdiff_t>(child.start + tree.get_operations().size());
#if BLT_DEBUG_LEVEL >= 2
blt::size_t found_bytes = vals.size().total_used_bytes;
blt::size_t expected_bytes = std::accumulate(ops.begin(),
ops.end(), 0ul,
[](const auto& v1, const auto& v2) {
if (v2.is_value)
return v1 + stack_allocator::aligned_size(v2.type_size);
return v1;
});
if (found_bytes != expected_bytes)
{
BLT_WARN("Found bytes %ld vs Expected Bytes %ld", found_bytes, expected_bytes);
BLT_ABORT("Amount of bytes in stack doesn't match the number of bytes expected for the operations");
}
#endif
}
}
if (current_func_info.argc.argc > replacement_func_info.argc.argc)
{
blt::size_t end_index = children_data[(current_func_info.argc.argc - replacement_func_info.argc.argc) - 1].end;
blt::size_t start_index = children_data.begin()->start;
blt::size_t total_bytes_for = c.total_value_bytes(start_index, end_index);
blt::size_t total_bytes_after = c.total_value_bytes(end_index);
auto* data = get_thread_pointer_for_size<struct mutation_func>(total_bytes_after);
vals.copy_to(data, total_bytes_after);
vals.pop_bytes(static_cast<blt::ptrdiff_t>(total_bytes_after + total_bytes_for));
vals.copy_from(data, total_bytes_after);
ops.erase(ops.begin() + static_cast<blt::ptrdiff_t>(start_index), ops.begin() + static_cast<blt::ptrdiff_t>(end_index));
} else if (current_func_info.argc.argc == replacement_func_info.argc.argc)
{
// exactly enough args
// return types should have been replaced if needed. this part should do nothing?
} else
{
// not enough args
blt::size_t start_index = c_node + 1;
blt::size_t total_bytes_after = c.total_value_bytes(start_index);
auto* data = get_thread_pointer_for_size<struct mutation_func>(total_bytes_after);
vals.copy_to(data, total_bytes_after);
vals.pop_bytes(static_cast<blt::ptrdiff_t>(total_bytes_after));
for (blt::ptrdiff_t i = static_cast<blt::ptrdiff_t>(replacement_func_info.argc.argc) - 1;
i >= current_func_info.argc.argc; i--)
{
auto& tree = get_static_tree_tl(program);
config.generator.get().generate(tree,
{program, replacement_func_info.argument_types[i].id, config.replacement_min_depth,
config.replacement_max_depth});
vals.insert(tree.get_values());
ops.insert(ops.begin() + static_cast<blt::ptrdiff_t>(start_index), tree.get_operations().begin(),
tree.get_operations().end());
start_index += tree.get_operations().size();
}
vals.copy_from(data, total_bytes_after);
}
// now finally update the type.
ops[c_node] = {program.get_typesystem().get_type(replacement_func_info.return_type).size(), random_replacement,
program.is_operator_ephemeral(random_replacement)};
}
#if BLT_DEBUG_LEVEL >= 2
if (!c.check(program, nullptr))
{
std::cout << "Parent: " << std::endl;
c_copy.print(program, std::cout, false, true);
std::cout << "Child Values:" << std::endl;
c.print(program, std::cout, true, true);
std::cout << std::endl;
BLT_ABORT("Tree Check Failed.");
}
#endif
}
break;
case mutation_operator::SUB_FUNC:
{
auto& current_func_info = program.get_operator_info(ops[c_node].id);
// need to:
// mutate the current function.
// current function is moved to one of the arguments.
// other arguments are generated.
// get a replacement which returns the same type.
auto& non_terminals = program.get_type_non_terminals(current_func_info.return_type.id);
if (non_terminals.empty())
continue;
operator_id random_replacement = program.get_random().select(non_terminals);
blt::size_t arg_position = 0;
do
{
auto& replacement_func_info = program.get_operator_info(random_replacement);
for (const auto& [index, v] : blt::enumerate(replacement_func_info.argument_types))
{
if (v.id == current_func_info.return_type.id)
{
arg_position = index;
goto exit;
}
}
random_replacement = program.get_random().select(program.get_type_non_terminals(current_func_info.return_type.id));
} while (true);
exit:
auto& replacement_func_info = program.get_operator_info(random_replacement);
auto new_argc = replacement_func_info.argc.argc;
// replacement function should be valid. let's make a copy of us.
auto current_end = c.find_endpoint(program, static_cast<blt::ptrdiff_t>(c_node));
blt::size_t for_bytes = c.total_value_bytes(c_node, current_end);
blt::size_t after_bytes = c.total_value_bytes(current_end);
auto size = current_end - c_node;
auto combined_ptr = get_thread_pointer_for_size<struct SUB_FUNC_FOR>(for_bytes + after_bytes);
vals.copy_to(combined_ptr, for_bytes + after_bytes);
vals.pop_bytes(static_cast<blt::ptrdiff_t>(for_bytes + after_bytes));
blt::size_t start_index = c_node;
for (blt::ptrdiff_t i = new_argc - 1; i > static_cast<blt::ptrdiff_t>(arg_position); i--)
{
auto& tree = get_static_tree_tl(program);
config.generator.get().generate(tree,
{program, replacement_func_info.argument_types[i].id, config.replacement_min_depth,
config.replacement_max_depth});
blt::size_t total_bytes_for = tree.total_value_bytes();
vals.copy_from(tree.get_values(), total_bytes_for);
ops.insert(ops.begin() + static_cast<blt::ptrdiff_t>(start_index), tree.get_operations().begin(),
tree.get_operations().end());
start_index += tree.get_operations().size();
}
start_index += size;
vals.copy_from(combined_ptr, for_bytes);
for (blt::ptrdiff_t i = static_cast<blt::ptrdiff_t>(arg_position) - 1; i >= 0; i--)
{
auto& tree = get_static_tree_tl(program);
config.generator.get().generate(tree,
{program, replacement_func_info.argument_types[i].id, config.replacement_min_depth,
config.replacement_max_depth});
blt::size_t total_bytes_for = tree.total_value_bytes();
vals.copy_from(tree.get_values(), total_bytes_for);
ops.insert(ops.begin() + static_cast<blt::ptrdiff_t>(start_index), tree.get_operations().begin(),
tree.get_operations().end());
start_index += tree.get_operations().size();
}
vals.copy_from(combined_ptr + for_bytes, after_bytes);
ops.insert(ops.begin() + static_cast<blt::ptrdiff_t>(c_node),
{program.get_typesystem().get_type(replacement_func_info.return_type).size(),
random_replacement, program.is_operator_ephemeral(random_replacement)});
#if BLT_DEBUG_LEVEL >= 2
if (!c.check(program, nullptr))
{
std::cout << "Parent: " << std::endl;
p.print(program, std::cout, false, true);
std::cout << "Child:" << std::endl;
c.print(program, std::cout, false, true);
std::cout << "Child Values:" << std::endl;
c.print(program, std::cout, true, true);
std::cout << std::endl;
BLT_ABORT("Tree Check Failed.");
}
#endif
}
break;
case mutation_operator::JUMP_FUNC:
{
auto& info = program.get_operator_info(ops[c_node].id);
blt::size_t argument_index = -1ul;
for (const auto& [index, v] : blt::enumerate(info.argument_types))
{
if (v.id == info.return_type.id)
{
argument_index = index;
break;
}
}
if (argument_index == -1ul)
continue;
static thread_local tracked_vector<tree_t::child_t> child_data;
child_data.clear();
c.find_child_extends(program, child_data, c_node, info.argument_types.size());
auto child_index = child_data.size() - 1 - argument_index;
auto child = child_data[child_index];
auto for_bytes = c.total_value_bytes(child.start, child.end);
auto after_bytes = c.total_value_bytes(child_data.back().end);
auto storage_ptr = get_thread_pointer_for_size<struct jump_func>(for_bytes + after_bytes);
vals.copy_to(storage_ptr + for_bytes, after_bytes);
vals.pop_bytes(static_cast<blt::ptrdiff_t>(after_bytes));
for (auto i = static_cast<blt::ptrdiff_t>(child_data.size() - 1); i > static_cast<blt::ptrdiff_t>(child_index); i--)
{
auto& cc = child_data[i];
auto bytes = c.total_value_bytes(cc.start, cc.end);
vals.pop_bytes(static_cast<blt::ptrdiff_t>(bytes));
ops.erase(ops.begin() + cc.start, ops.begin() + cc.end);
}
vals.copy_to(storage_ptr, for_bytes);
vals.pop_bytes(static_cast<blt::ptrdiff_t>(for_bytes));
for (auto i = static_cast<blt::ptrdiff_t>(child_index - 1); i >= 0; i--)
{
auto& cc = child_data[i];
auto bytes = c.total_value_bytes(cc.start, cc.end);
vals.pop_bytes(static_cast<blt::ptrdiff_t>(bytes));
ops.erase(ops.begin() + cc.start, ops.begin() + cc.end);
}
ops.erase(ops.begin() + static_cast<blt::ptrdiff_t>(c_node));
vals.copy_from(storage_ptr, for_bytes + after_bytes);
#if BLT_DEBUG_LEVEL >= 2
if (!c.check(program, nullptr))
{
std::cout << "Parent: " << std::endl;
p.print(program, std::cout, false, true);
std::cout << "Child Values:" << std::endl;
c.print(program, std::cout, true, true);
std::cout << std::endl;
BLT_ABORT("Tree Check Failed.");
}
#endif
}
break;
case mutation_operator::COPY:
{
auto& info = program.get_operator_info(ops[c_node].id);
blt::size_t pt = -1ul;
blt::size_t pf = -1ul;
for (const auto& [index, v] : blt::enumerate(info.argument_types))
{
for (blt::size_t i = index + 1; i < info.argument_types.size(); i++)
{
auto& v1 = info.argument_types[i];
if (v == v1)
{
if (pt == -1ul)
pt = index;
else
pf = index;
break;
}
}
if (pt != -1ul && pf != -1ul)
break;
}
if (pt == -1ul || pf == -1ul)
continue;
blt::size_t from = 0;
blt::size_t to = 0;
if (program.get_random().choice())
{
from = pt;
to = pf;
} else
{
from = pf;
to = pt;
}
static thread_local tracked_vector<tree_t::child_t> child_data;
child_data.clear();
c.find_child_extends(program, child_data, c_node, info.argument_types.size());
auto from_index = child_data.size() - 1 - from;
auto to_index = child_data.size() - 1 - to;
auto& from_child = child_data[from_index];
auto& to_child = child_data[to_index];
blt::size_t from_bytes = c.total_value_bytes(from_child.start, from_child.end);
blt::size_t after_from_bytes = c.total_value_bytes(from_child.end);
blt::size_t to_bytes = c.total_value_bytes(to_child.start, to_child.end);
blt::size_t after_to_bytes = c.total_value_bytes(to_child.end);
auto after_bytes = std::max(after_from_bytes, after_to_bytes);
auto from_ptr = get_thread_pointer_for_size<struct copy>(from_bytes);
auto after_ptr = get_thread_pointer_for_size<struct copy_after>(after_bytes);
vals.copy_to(after_ptr, after_from_bytes);
vals.pop_bytes(static_cast<blt::ptrdiff_t>(after_from_bytes));
vals.copy_to(from_ptr, from_bytes);
vals.copy_from(after_ptr, after_from_bytes);
vals.copy_to(after_ptr, after_to_bytes);
vals.pop_bytes(static_cast<blt::ptrdiff_t>(after_to_bytes + to_bytes));
vals.copy_from(from_ptr, from_bytes);
vals.copy_from(after_ptr, after_to_bytes);
static thread_local tracked_vector<op_container_t> op_copy;
op_copy.clear();
op_copy.insert(op_copy.begin(), ops.begin() + from_child.start, ops.begin() + from_child.end);
ops.erase(ops.begin() + to_child.start, ops.begin() + to_child.end);
ops.insert(ops.begin() + to_child.start, op_copy.begin(), op_copy.end());
}
break;
case mutation_operator::END:
default:
#if BLT_DEBUG_LEVEL > 1
BLT_ABORT("You shouldn't be able to get here!");
#else
BLT_UNREACHABLE;
#endif
}
}
#if BLT_DEBUG_LEVEL >= 2
if (!c.check(program, nullptr))
{
std::cout << "Parent: " << std::endl;
p.print(program, std::cout, false, true);
std::cout << "Child Values:" << std::endl;
c.print(program, std::cout, true, true);
std::cout << std::endl;
BLT_ABORT("Tree Check Failed.");
}
#endif
return true;
}
}