blt-gp/tests/serialization_test.cpp

105 lines
3.9 KiB
C++

/*
* <Short Description>
* Copyright (C) 2025 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../examples/symbolic_regression.h"
#include <blt/gp/program.h>
#include <blt/logging/logging.h>
using namespace blt::gp;
struct context
{
float x, y;
};
prog_config_t config = prog_config_t()
.set_initial_min_tree_size(2)
.set_initial_max_tree_size(6)
.set_elite_count(2)
.set_crossover_chance(0.8)
.set_mutation_chance(0.1)
.set_reproduction_chance(0.1)
.set_max_generations(50)
.set_pop_size(500)
.set_thread_count(1);
example::symbolic_regression_t regression{691ul, config};
operation_t addf{[](const float a, const float b) { return a + b; }, "addf"};
operation_t subf([](const float a, const float b) { return a - b; }, "subf");
operation_t mulf([](const float a, const float b) { return a * b; }, "mulf");
operation_t pro_divf([](const float a, const float b) { return b == 0.0f ? 0.0f : a / b; }, "divf");
operation_t op_sinf([](const float a) { return std::sin(a); }, "sinf");
operation_t op_cosf([](const float a) { return std::cos(a); }, "cosf");
operation_t op_expf([](const float a) { return std::exp(a); }, "expf");
operation_t op_logf([](const float a) { return a <= 0.0f ? 0.0f : std::log(a); }, "logf");
auto litf = operation_t([]()
{
return regression.get_program().get_random().get_float(-1.0f, 1.0f);
}, "litf").set_ephemeral();
operation_t op_xf([](const context& context)
{
return context.x;
}, "xf");
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t)
{
constexpr static double value_cutoff = 1.e15;
for (auto& fitness_case : regression.get_training_cases())
{
BLT_GP_UPDATE_CONTEXT(fitness_case);
auto val = current_tree.get_evaluation_ref<float>(fitness_case);
const auto diff = std::abs(fitness_case.y - val.get().value());
if (diff < value_cutoff)
{
fitness.raw_fitness += diff;
if (diff <= 0.01)
fitness.hits++;
}
else
fitness.raw_fitness += value_cutoff;
}
fitness.standardized_fitness = fitness.raw_fitness;
fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness));
return static_cast<size_t>(fitness.hits) == regression.get_training_cases().size();
}
int main()
{
operator_builder<context> builder{};
builder.build(addf, subf, mulf, pro_divf, op_sinf, op_cosf, op_expf, op_logf, litf, op_xf);
regression.get_program().set_operations(builder.grab());
auto& program = regression.get_program();
static auto sel = select_tournament_t{};
program.generate_initial_population(program.get_typesystem().get_type<float>().id());
program.setup_generational_evaluation(fitness_function, sel, sel, sel);
while (!program.should_terminate())
{
BLT_TRACE("---------------\\{Begin Generation {}}---------------", program.get_current_generation());
BLT_TRACE("Creating next generation");
program.create_next_generation();
BLT_TRACE("Move to next generation");
program.next_generation();
BLT_TRACE("Evaluate Fitness");
program.evaluate_fitness();
}
}