blt-gp/include/blt/gp/tree.h

858 lines
28 KiB
C++

#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef BLT_GP_TREE_H
#define BLT_GP_TREE_H
#include <blt/gp/util/meta.h>
#include <blt/gp/typesystem.h>
#include <blt/gp/stack.h>
#include <blt/gp/fwdecl.h>
#include <blt/std/types.h>
#include <utility>
#include <stack>
namespace blt::gp
{
// TODO: i feel like this should be in its own class
struct operator_special_flags
{
explicit operator_special_flags(const bool is_ephemeral = false, const bool has_ephemeral_drop = false): m_ephemeral(is_ephemeral),
m_ephemeral_drop(has_ephemeral_drop)
{
}
[[nodiscard]] bool is_ephemeral() const
{
return m_ephemeral;
}
[[nodiscard]] bool has_ephemeral_drop() const
{
return m_ephemeral_drop;
}
private:
bool m_ephemeral : 1;
bool m_ephemeral_drop : 1;
};
static_assert(sizeof(operator_special_flags) == 1, "Size of operator flags struct is expected to be 1 byte!");
struct op_container_t
{
op_container_t(const size_t type_size, const operator_id id, const bool is_value, const operator_special_flags flags):
m_type_size(type_size), m_id(id), m_is_value(is_value), m_flags(flags)
{
}
[[nodiscard]] auto type_size() const
{
return m_type_size;
}
[[nodiscard]] auto id() const
{
return m_id;
}
[[nodiscard]] auto is_value() const
{
return m_is_value;
}
[[nodiscard]] bool has_ephemeral_drop() const
{
return m_flags.has_ephemeral_drop();
}
[[nodiscard]] operator_special_flags get_flags() const
{
return m_flags;
}
private:
size_t m_type_size;
operator_id m_id;
bool m_is_value;
operator_special_flags m_flags;
};
class evaluation_context
{
public:
explicit evaluation_context() = default;
stack_allocator values;
};
inline size_t accumulate_type_sizes(const detail::op_iter_t begin, const detail::op_iter_t end)
{
size_t total = 0;
for (auto it = begin; it != end; ++it)
{
if (it->is_value())
total += it->type_size();
}
return total;
}
template <typename T>
class evaluation_ref
{
public:
explicit evaluation_ref(T& value, evaluation_context& context): m_value(&value), m_context(&context)
{
}
evaluation_ref(const evaluation_ref& copy) = delete;
evaluation_ref& operator=(const evaluation_ref& copy) = delete;
evaluation_ref(evaluation_ref&& move) noexcept : m_value(move.m_value), m_context(move.m_context)
{
move.m_value = nullptr;
move.m_context = nullptr;
}
evaluation_ref& operator=(evaluation_ref&& move) noexcept
{
m_value = std::exchange(m_value, move.m_value);
m_context = std::exchange(m_context, move.m_context);
return *this;
}
T& get()
{
return *m_value;
}
const T& get() const
{
return *m_value;
}
explicit operator T&()
{
return *m_value;
}
explicit operator T&() const
{
return *m_value;
}
~evaluation_ref()
{
if constexpr (detail::has_func_drop_v<T>)
{
if (m_value != nullptr)
{
m_value->drop();
m_context->values.reset();
}
}
}
private:
T* m_value;
evaluation_context* m_context;
};
class tree_t
{
public:
struct child_t
{
ptrdiff_t start;
// one past the end
ptrdiff_t end;
};
struct subtree_point_t
{
ptrdiff_t pos;
type_id type;
explicit subtree_point_t(const ptrdiff_t pos): pos(pos), type(0)
{
}
subtree_point_t(const ptrdiff_t pos, const type_id type): pos(pos), type(type)
{
}
};
struct byte_only_transaction_t
{
byte_only_transaction_t(tree_t& tree, const size_t bytes): tree(tree), data(nullptr), bytes(bytes)
{
move(bytes);
}
explicit byte_only_transaction_t(tree_t& tree): tree(tree), data(nullptr), bytes(0)
{
}
byte_only_transaction_t(const byte_only_transaction_t& copy) = delete;
byte_only_transaction_t& operator=(const byte_only_transaction_t& copy) = delete;
byte_only_transaction_t(byte_only_transaction_t&& move) noexcept: tree(move.tree), data(std::exchange(move.data, nullptr)),
bytes(std::exchange(move.bytes, 0))
{
}
byte_only_transaction_t& operator=(byte_only_transaction_t&& move) noexcept = delete;
void move(size_t bytes_to_move);
[[nodiscard]] bool empty() const
{
return bytes == 0;
}
~byte_only_transaction_t()
{
if (!empty())
{
tree.values.copy_from(data, bytes);
bytes = 0;
}
}
private:
tree_t& tree;
u8* data;
size_t bytes;
};
explicit tree_t(gp_program& program): m_program(&program)
{
}
tree_t(const tree_t& copy): m_program(copy.m_program)
{
copy_fast(copy);
}
tree_t& operator=(const tree_t& copy)
{
if (this == &copy)
return *this;
m_program = copy.m_program;
copy_fast(copy);
return *this;
}
/**
* This function copies the data from the provided tree, will attempt to reserve and copy in one step.
* will avoid reallocation if enough space is already present.
*
* This function is meant to copy into and replaces data inside the tree.
*/
void copy_fast(const tree_t& copy)
{
if (this == &copy)
return;
operations.reserve(copy.operations.size());
auto copy_it = copy.operations.begin();
auto op_it = operations.begin();
size_t total_op_bytes = 0;
size_t total_copy_bytes = 0;
for (; op_it != operations.end(); ++op_it)
{
if (copy_it == copy.operations.end())
break;
if (op_it->is_value())
{
handle_refcount_decrement(op_it, total_op_bytes);
total_op_bytes += op_it->type_size();
}
*op_it = *copy_it;
if (copy_it->is_value())
{
copy.handle_refcount_increment(copy_it, total_copy_bytes);
total_copy_bytes += copy_it->type_size();
}
++copy_it;
}
const auto op_it_cpy = op_it;
for (; op_it != operations.end(); ++op_it)
{
if (op_it->is_value())
{
handle_refcount_decrement(op_it, total_op_bytes);
total_op_bytes += op_it->type_size();
}
}
operations.erase(op_it_cpy, operations.end());
for (; copy_it != copy.operations.end(); ++copy_it)
{
if (copy_it->is_value())
{
copy.handle_refcount_increment(copy_it, total_copy_bytes);
total_copy_bytes += copy_it->type_size();
}
operations.emplace_back(*copy_it);
}
values.reserve(copy.values.stored());
values.reset();
values.insert(copy.values);
}
tree_t(tree_t&& move) = default;
tree_t& operator=(tree_t&& move) = default;
void clear(gp_program& program);
void insert_operator(size_t index, const op_container_t& container);
void insert_operator(const op_container_t& container)
{
operations.emplace_back(container);
handle_operator_inserted(operations.back());
}
template <typename... Args>
void emplace_operator(Args&&... args)
{
operations.emplace_back(std::forward<Args>(args)...);
handle_operator_inserted(operations.back());
}
size_t get_depth(gp_program& program) const;
/**
* Selects a random index inside this tree's operations stack
* @param terminal_chance if we select a terminal this is the chance we will actually pick it, otherwise continue the loop.
*/
[[nodiscard]] subtree_point_t select_subtree(double terminal_chance = 0.1) const;
/**
* Selects a random index inside the tree's operations stack, with a limit on the max number of times we will attempt to select this point.
* @param type type to find
* @param max_tries maximum number of times we are allowed to select a tree without finding a corresponding type.
* @param terminal_chance if we select a terminal this is the chance that we will actually pick it
*/
[[nodiscard]] std::optional<subtree_point_t> select_subtree(type_id type, u32 max_tries = 5, double terminal_chance = 0.1) const;
/**
* Select an index by traversing through the tree structure
* @param terminal_chance if we select a terminal this is the chance that we will actually pick it.
* @param depth_multiplier this controls how the depth contributes to the chance to exit.
* By default, a depth of 3.5 will have a 50% chance of returning the current index.
*/
[[nodiscard]] subtree_point_t select_subtree_traverse(double terminal_chance = 0.1, double depth_multiplier = 0.6) const;
/**
* SSelect an index by traversing through the tree structure, with a limit on the max number of times we will attempt to select this point.
* @param type type to find
* @param max_tries maximum number of times we are allowed to select a tree without finding a corresponding type.
* @param terminal_chance if we select a terminal this is the chance that we will actually pick it
* @param depth_multiplier this controls how the depth contributes to the chance to exit.
* By default, a depth of 3.5 will have a 50% chance of returning the current index.
*/
[[nodiscard]] std::optional<subtree_point_t> select_subtree_traverse(type_id type, u32 max_tries = 5, double terminal_chance = 0.1,
double depth_multiplier = 0.6) const;
/**
* Copies the subtree found at point into the provided out params
* @param point subtree point
* @param extent how far the subtree extends
* @param operators vector for storing subtree operators
* @param stack stack for storing subtree values
*/
void copy_subtree(subtree_point_t point, ptrdiff_t extent, tracked_vector<op_container_t>& operators, stack_allocator& stack);
/**
* Copies the subtree found at point into the provided out params
* @param point subtree point
* @param operators vector for storing subtree operators
* @param stack stack for storing subtree values
*/
void copy_subtree(const subtree_point_t point, tracked_vector<op_container_t>& operators, stack_allocator& stack)
{
copy_subtree(point, find_endpoint(point.pos), operators, stack);
}
void copy_subtree(const subtree_point_t point, const ptrdiff_t extent, tree_t& out_tree)
{
copy_subtree(point, extent, out_tree.operations, out_tree.values);
}
void copy_subtree(const subtree_point_t point, tree_t& out_tree)
{
copy_subtree(point, find_endpoint(point.pos), out_tree);
}
/**
* Swaps the subtrees between this tree and the other tree
* @param our_subtree
* @param other_tree
* @param other_subtree
*/
void swap_subtrees(subtree_point_t our_subtree, tree_t& other_tree, subtree_point_t other_subtree);
/**
* Replaces the point inside our tree with a new tree provided to this function.
* Uses the extent instead of calculating it for removing the existing subtree
* This can be used if you already have child tree information, such as when using @code find_child_extends@endcode
* @param point point to replace at
* @param extent extend of the subtree (child tree)
* @param other_tree other tree to replace with
*/
void replace_subtree(subtree_point_t point, ptrdiff_t extent, tree_t& other_tree);
/**
* Replaces the point inside our tree with a new tree provided to this function
* @param point point to replace at
* @param other_tree other tree to replace with
*/
void replace_subtree(const subtree_point_t point, tree_t& other_tree)
{
replace_subtree(point, find_endpoint(point.pos), other_tree);
}
/**
* Deletes the subtree at a point, bounded by extent. This is useful if you already know the size of the child tree
* Note: if you provide an incorrectly sized extent this will create UB within the GP program
* extent must be one past the last element in the subtree, as returned by all helper functions here.
* @param point point to delete from
* @param extent end point of the tree
*/
void delete_subtree(subtree_point_t point, ptrdiff_t extent);
/**
* Deletes the subtree at a point
* @param point point of subtree to recursively delete
*/
void delete_subtree(const subtree_point_t point)
{
delete_subtree(point, find_endpoint(point.pos));
}
/**
* Insert a subtree before the specified point
* @param point point to insert into
* @param other_tree the tree to insert
* @return point + other_tree.size()
*/
ptrdiff_t insert_subtree(subtree_point_t point, tree_t& other_tree);
/**
* temporarily moves the last bytes amount of data from the current stack. this can be useful for if you are going to do a lot
* of consecutive operations on the tree as this will avoid extra copy + reinsert.
* The object returned by this function will automatically move the data back in when it goes out of scope.
* @param operator_index operator index to move from. this is inclusive
*/
void temporary_move(const size_t)
{
// return obt_move_t{*this, operator_index};
}
void modify_operator(size_t point, operator_id new_id, std::optional<type_id> return_type = {});
/**
* User function for evaluating this tree using a context reference. This function should only be used if the tree is expecting the context value
* This function returns a copy of your value, if it is too large for the stack, or you otherwise need a reference, please use the corresponding
* get_evaluation_ref function!
*/
template <typename T, typename Context>
T get_evaluation_value(const Context& context) const
{
auto& ctx = evaluate(context);
auto val = ctx.values.template from<T>(0);
if constexpr (detail::has_func_drop_v<T>)
{
ctx.values.template from<T>(0).drop();
}
ctx.values.reset();
return val;
}
/**
* User function for evaluating this tree without a context reference. This function should only be used if the tree is expecting the context value
* This function returns a copy of your value, if it is too large for the stack, or you otherwise need a reference, please use the corresponding
* get_evaluation_ref function!
*/
template <typename T>
T get_evaluation_value() const
{
auto& ctx = evaluate();
auto val = ctx.values.from<T>(0);
if constexpr (detail::has_func_drop_v<T>)
{
ctx.values.from<T>(0).drop();
}
ctx.values.reset();
return val;
}
/**
* User function for evaluating the tree with context returning a reference to the value.
* The class returned is used to automatically drop the value when you are done using it
*/
template <typename T, typename Context>
evaluation_ref<T> get_evaluation_ref(const Context& context) const
{
auto& ctx = evaluate(context);
auto& val = ctx.values.template from<T>(0);
return evaluation_ref<T>{val, ctx};
}
/**
* User function for evaluating the tree without context returning a reference to the value.
* The class returned is used to automatically drop the value when you are done using it
*/
template <typename T>
evaluation_ref<T> get_evaluation_ref() const
{
auto& ctx = evaluate();
auto& val = ctx.values.from<T>(0);
return evaluation_ref<T>{val, ctx};
}
void print(std::ostream& out, bool print_literals = true, bool pretty_indent = false, bool include_types = false,
ptrdiff_t marked_index = -1) const;
bool check(void* context) const;
void find_child_extends(tracked_vector<child_t>& vec, blt::size_t parent_node, blt::size_t argc) const;
// places one past the end of the child. so it's [start, end)
[[nodiscard]] ptrdiff_t find_endpoint(blt::ptrdiff_t start) const;
// valid for [begin, end)
static size_t total_value_bytes(const detail::const_op_iter_t begin, const detail::const_op_iter_t end)
{
size_t total = 0;
for (auto it = begin; it != end; ++it)
{
if (it->is_value())
total += it->type_size();
}
return total;
}
[[nodiscard]] size_t total_value_bytes(const size_t begin, const size_t end) const
{
return total_value_bytes(operations.begin() + static_cast<ptrdiff_t>(begin),
operations.begin() + static_cast<ptrdiff_t>(end));
}
[[nodiscard]] size_t total_value_bytes(const size_t begin) const
{
return total_value_bytes(operations.begin() + static_cast<ptrdiff_t>(begin), operations.end());
}
[[nodiscard]] size_t total_value_bytes() const
{
return total_value_bytes(operations.begin(), operations.end());
}
[[nodiscard]] size_t size() const
{
return operations.size();
}
[[nodiscard]] const op_container_t& get_operator(const size_t point) const
{
return operations[point];
}
[[nodiscard]] subtree_point_t subtree_from_point(ptrdiff_t point) const;
template <typename Context, typename... Operators>
static auto make_execution_lambda(size_t call_reserve_size, Operators&... operators)
{
return [call_reserve_size, &operators...](const tree_t& tree, void* context) -> evaluation_context& {
const auto& ops = tree.operations;
const auto& vals = tree.values;
thread_local evaluation_context results{};
results.values.reset();
results.values.reserve(call_reserve_size);
size_t total_so_far = 0;
for (const auto& operation : iterate(ops).rev())
{
if (operation.is_value())
{
total_so_far += operation.type_size();
results.values.copy_from(vals.from(total_so_far), operation.type_size());
continue;
}
call_jmp_table<Context>(operation.id(), context, results.values, results.values, operators...);
}
return results;
};
}
~tree_t()
{
clear(*m_program);
}
private:
void handle_operator_inserted(const op_container_t& op);
template <typename Iter>
void handle_refcount_decrement(const Iter iter, const size_t forward_bytes) const
{
if (iter->get_flags().is_ephemeral() && iter->has_ephemeral_drop())
{
// TODO
auto& ptr = values.access_pointer_forward(forward_bytes, iter->type_size());
--*ptr;
}
}
template <typename Iter>
void handle_refcount_increment(const Iter iter, const size_t forward_bytes) const
{
if (iter->get_flags().is_ephemeral() && iter->has_ephemeral_drop())
{
// TODO
auto& ptr = values.access_pointer_forward(forward_bytes, iter->type_size());
--*ptr;
}
}
template <typename T, std::enable_if_t<!(std::is_pointer_v<T> || std::is_null_pointer_v<T>), bool> = true>
[[nodiscard]] evaluation_context& evaluate(const T& context) const
{
return evaluate(const_cast<void*>(static_cast<const void*>(&context)));
}
[[nodiscard]] evaluation_context& evaluate() const
{
return evaluate(nullptr);
}
[[nodiscard]] evaluation_context& evaluate(void* ptr) const;
tracked_vector<op_container_t> operations;
stack_allocator values;
gp_program* m_program;
/*
* Static members
* --------------
*/
protected:
template <typename Context, typename Operator>
static void execute(void* context, stack_allocator& write_stack, stack_allocator& read_stack, Operator& operation)
{
if constexpr (std::is_same_v<detail::remove_cv_ref<typename Operator::First_Arg>, Context>)
{
write_stack.push(operation(context, read_stack));
}
else
{
write_stack.push(operation(read_stack));
}
}
template <typename Context, size_t id, typename Operator>
static bool call(const size_t op, void* context, stack_allocator& write_stack, stack_allocator& read_stack, Operator& operation)
{
if (id == op)
{
execute<Context>(context, write_stack, read_stack, operation);
return false;
}
return true;
}
template <typename Context, typename... Operators, size_t... operator_ids>
static void call_jmp_table_internal(size_t op, void* context, stack_allocator& write_stack, stack_allocator& read_stack,
std::integer_sequence<size_t, operator_ids...>, Operators&... operators)
{
if (op >= sizeof...(operator_ids))
{
BLT_UNREACHABLE;
}
(call<Context, operator_ids>(op, context, write_stack, read_stack, operators) && ...);
}
template <typename Context, typename... Operators>
static void call_jmp_table(size_t op, void* context, stack_allocator& write_stack, stack_allocator& read_stack,
Operators&... operators)
{
call_jmp_table_internal<Context>(op, context, write_stack, read_stack, std::index_sequence_for<Operators...>(), operators...);
}
};
struct fitness_t
{
double raw_fitness = 0;
double standardized_fitness = 0;
double adjusted_fitness = 0;
i64 hits = 0;
};
struct individual_t
{
tree_t tree;
fitness_t fitness;
void copy_fast(const tree_t& copy)
{
// fast copy of the tree
tree.copy_fast(copy);
// reset fitness
fitness = {};
}
individual_t() = delete;
explicit individual_t(tree_t&& tree): tree(std::move(tree))
{
}
explicit individual_t(const tree_t& tree): tree(tree)
{
}
individual_t(const individual_t&) = default;
individual_t(individual_t&&) = default;
individual_t& operator=(const individual_t&) = delete;
individual_t& operator=(individual_t&&) = default;
};
class population_t
{
public:
class population_tree_iterator
{
public:
population_tree_iterator(tracked_vector<individual_t>& ind, blt::size_t pos): ind(ind), pos(pos)
{
}
auto begin()
{
return population_tree_iterator(ind, 0);
}
auto end()
{
return population_tree_iterator(ind, ind.size());
}
population_tree_iterator operator++(int)
{
auto prev = pos++;
return {ind, prev};
}
population_tree_iterator operator++()
{
return {ind, ++pos};
}
tree_t& operator*() const
{
return ind[pos].tree;
}
tree_t& operator->() const
{
return ind[pos].tree;
}
friend bool operator==(population_tree_iterator a, population_tree_iterator b)
{
return a.pos == b.pos;
}
friend bool operator!=(population_tree_iterator a, population_tree_iterator b)
{
return a.pos != b.pos;
}
private:
tracked_vector<individual_t>& ind;
blt::size_t pos;
};
tracked_vector<individual_t>& get_individuals()
{
return individuals;
}
[[nodiscard]] const tracked_vector<individual_t>& get_individuals() const
{
return individuals;
}
population_tree_iterator for_each_tree()
{
return population_tree_iterator{individuals, 0};
}
auto begin()
{
return individuals.begin();
}
auto end()
{
return individuals.end();
}
[[nodiscard]] auto begin() const
{
return individuals.begin();
}
[[nodiscard]] auto end() const
{
return individuals.end();
}
void clear()
{
individuals.clear();
}
population_t() = default;
population_t(const population_t&) = default;
population_t(population_t&&) = default;
population_t& operator=(const population_t&) = delete;
population_t& operator=(population_t&&) = default;
private:
tracked_vector<individual_t> individuals;
};
}
#endif //BLT_GP_TREE_H