blt-gp/tests/drop_test.cpp

150 lines
5.1 KiB
C++

/*
* <Short Description>
* Copyright (C) 2025 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "../examples/symbolic_regression.h"
#include <blt/gp/program.h>
#include <blt/std/logging.h>
using namespace blt::gp;
std::atomic_uint64_t normal_construct = 0;
std::atomic_uint64_t ephemeral_construct = 0;
std::atomic_uint64_t normal_drop = 0;
std::atomic_uint64_t ephemeral_drop = 0;
struct drop_type
{
float value;
bool ephemeral = false;
drop_type() : value(0)
{
++normal_construct;
}
explicit drop_type(const float silly) : value(silly)
{
++normal_construct;
}
explicit drop_type(const float silly, bool) : value(silly), ephemeral(true)
{
// BLT_TRACE("Constructor with value %f", silly);
++ephemeral_construct;
}
void drop() const
{
if (ephemeral)
++ephemeral_drop;
else
++normal_drop;
}
friend std::ostream& operator<<(std::ostream& os, const drop_type& dt)
{
os << dt.value;
return os;
}
};
struct context
{
float x, y;
};
prog_config_t config = prog_config_t()
.set_initial_min_tree_size(2)
.set_initial_max_tree_size(6)
.set_elite_count(2)
.set_crossover_chance(0.8)
.set_mutation_chance(0.0)
.set_reproduction_chance(0.0)
.set_max_generations(50)
.set_pop_size(50)
.set_thread_count(1);
example::symbolic_regression_t regression{691ul, config};
operation_t add{[](const drop_type a, const drop_type b) { return drop_type{a.value + b.value}; }, "add"};
operation_t sub([](const drop_type a, const drop_type b) { return drop_type{a.value - b.value}; }, "sub");
operation_t mul([](const drop_type a, const drop_type b) { return drop_type{a.value * b.value}; }, "mul");
operation_t pro_div([](const drop_type a, const drop_type b) { return drop_type{b.value == 0.0f ? 0.0f : a.value / b.value}; }, "div");
operation_t op_sin([](const drop_type a) { return drop_type{std::sin(a.value)}; }, "sin");
operation_t op_cos([](const drop_type a) { return drop_type{std::cos(a.value)}; }, "cos");
operation_t op_exp([](const drop_type a) { return drop_type{std::exp(a.value)}; }, "exp");
operation_t op_log([](const drop_type a) { return drop_type{a.value <= 0.0f ? 0.0f : std::log(a.value)}; }, "log");
auto lit = operation_t([]()
{
return drop_type{regression.get_program().get_random().get_float(-1.0f, 1.0f), true};
}, "lit").set_ephemeral();
operation_t op_x([](const context& context)
{
return drop_type{context.x};
}, "x");
bool fitness_function(const tree_t& current_tree, fitness_t& fitness, size_t)
{
constexpr static double value_cutoff = 1.e15;
for (auto& fitness_case : regression.get_training_cases())
{
BLT_GP_UPDATE_CONTEXT(fitness_case);
auto val = current_tree.get_evaluation_ref<drop_type>(fitness_case);
const auto diff = std::abs(fitness_case.y - val.get().value);
if (diff < value_cutoff)
{
fitness.raw_fitness += diff;
if (diff <= 0.01)
fitness.hits++;
}
else
fitness.raw_fitness += value_cutoff;
}
fitness.standardized_fitness = fitness.raw_fitness;
fitness.adjusted_fitness = (1.0 / (1.0 + fitness.standardized_fitness));
return static_cast<size_t>(fitness.hits) == regression.get_training_cases().size();
}
int main()
{
operator_builder<context> builder{};
builder.build(add, sub, mul, pro_div, op_sin, op_cos, op_exp, op_log, lit, op_x);
regression.get_program().set_operations(builder.grab());
auto& program = regression.get_program();
static auto sel = select_tournament_t{};
program.generate_population(program.get_typesystem().get_type<drop_type>().id(), fitness_function, sel, sel, sel);
while (!program.should_terminate())
{
BLT_TRACE("Creating next generation");
program.create_next_generation();
BLT_TRACE("Move to next generation");
program.next_generation();
BLT_TRACE("Evaluate Fitness");
program.evaluate_fitness();
}
// program.get_best_individuals<1>()[0].get().tree.print(program, std::cout, true, true);
BLT_TRACE("Created %ld times", normal_construct.load());
BLT_TRACE("Dropped %ld times", normal_drop.load());
BLT_TRACE("Ephemeral created %ld times", ephemeral_construct.load());
BLT_TRACE("Ephemeral dropped %ld times", ephemeral_drop.load());
}