blt-gp/src/tree.cpp

706 lines
26 KiB
C++

/*
* <Short Description>
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <blt/gp/tree.h>
#include <blt/gp/stack.h>
#include <blt/std/assert.h>
#include <blt/logging/logging.h>
#include <blt/gp/program.h>
#include <stack>
namespace blt::gp
{
template <typename>
static u8* get_thread_pointer_for_size(const size_t bytes)
{
thread_local expanding_buffer<u8> buffer;
if (bytes > buffer.size())
buffer.resize(bytes);
return buffer.data();
}
std::ostream& create_indent(std::ostream& out, blt::size_t amount, bool pretty_print)
{
if (!pretty_print)
return out;
for (blt::size_t i = 0; i < amount; i++)
out << '\t';
return out;
}
std::string_view end_indent(bool pretty_print)
{
return pretty_print ? "\n" : "";
}
std::string get_return_type(gp_program& program, type_id id, bool use_returns)
{
if (!use_returns)
return "";
return "(" + std::string(program.get_typesystem().get_type(id).name()) + ")";
}
void tree_t::byte_only_transaction_t::move(const size_t bytes_to_move)
{
bytes = bytes_to_move;
data = get_thread_pointer_for_size<struct move_tempoary_bytes>(bytes);
tree.values.copy_to(data, bytes);
tree.values.pop_bytes(bytes);
}
void tree_t::print(std::ostream& out, const bool print_literals, const bool pretty_print, const bool include_types,
const ptrdiff_t marked_index) const
{
std::stack<blt::size_t> arguments_left;
blt::size_t indent = 0;
stack_allocator reversed;
if (print_literals)
{
// I hate this.
stack_allocator copy = values;
// reverse the order of the stack
for (const auto& v : operations)
{
if (v.is_value())
copy.transfer_bytes(reversed, v.type_size());
}
}
for (const auto& [i, v] : enumerate(operations))
{
auto info = m_program->get_operator_info(v.id());
const auto name = m_program->get_name(v.id()) ? m_program->get_name(v.id()).value() : "NULL";
auto return_type = get_return_type(*m_program, info.return_type, include_types);
if (static_cast<ptrdiff_t>(i) == marked_index)
{
out << "[ERROR OCCURRED HERE] -> ";
}
if (info.argc.argc > 0)
{
create_indent(out, indent, pretty_print) << "(";
indent++;
arguments_left.emplace(info.argc.argc);
out << name << return_type << end_indent(pretty_print);
}
else
{
if (print_literals)
{
create_indent(out, indent, pretty_print);
if (m_program->is_operator_ephemeral(v.id()))
{
m_program->get_print_func(v.id())(out, reversed);
reversed.pop_bytes(v.type_size());
}
else
out << name;
out << return_type << end_indent(pretty_print);
}
else
create_indent(out, indent, pretty_print) << name << return_type << end_indent(pretty_print);
}
while (!arguments_left.empty())
{
auto top = arguments_left.top();
arguments_left.pop();
if (top == 0)
{
indent--;
create_indent(out, indent, pretty_print) << ")" << end_indent(pretty_print);
continue;
}
else
{
if (!pretty_print)
out << " ";
arguments_left.push(top - 1);
break;
}
}
}
while (!arguments_left.empty())
{
auto top = arguments_left.top();
arguments_left.pop();
if (top == 0)
{
indent--;
create_indent(out, indent, pretty_print) << ")" << end_indent(pretty_print);
continue;
}
else
{
BLT_ERROR("Failed to print tree correctly!");
break;
}
}
out << '\n';
}
size_t tree_t::get_depth(gp_program& program) const
{
size_t depth = 0;
auto operations_stack = operations;
thread_local tracked_vector<size_t> values_process;
thread_local tracked_vector<size_t> value_stack;
values_process.clear();
value_stack.clear();
for (const auto& op : operations_stack)
{
if (op.is_value())
value_stack.push_back(1);
}
while (!operations_stack.empty())
{
auto operation = operations_stack.back();
// keep the last value in the stack on the process stack stored in the eval context, this way it can be accessed easily.
operations_stack.pop_back();
if (operation.is_value())
{
auto d = value_stack.back();
depth = std::max(depth, d);
values_process.push_back(d);
value_stack.pop_back();
continue;
}
size_t local_depth = 0;
for (size_t i = 0; i < program.get_operator_info(operation.id()).argc.argc; i++)
{
local_depth = std::max(local_depth, values_process.back());
values_process.pop_back();
}
value_stack.push_back(local_depth + 1);
operations_stack.emplace_back(operation.type_size(), operation.id(), true, program.get_operator_flags(operation.id()));
}
return depth;
}
tree_t::subtree_point_t tree_t::select_subtree(const double terminal_chance) const
{
do
{
const auto point = m_program->get_random().get_u64(0, operations.size());
const auto& info = m_program->get_operator_info(operations[point].id());
if (!info.argc.is_terminal())
return {static_cast<ptrdiff_t>(point), info.return_type};
if (m_program->get_random().choice(terminal_chance))
return {static_cast<ptrdiff_t>(point), info.return_type};
}
while (true);
}
std::optional<tree_t::subtree_point_t> tree_t::select_subtree(const type_id type, const u32 max_tries, const double terminal_chance) const
{
for (u32 i = 0; i < max_tries; ++i)
{
if (const auto tree = select_subtree(terminal_chance); tree.type == type)
return tree;
}
return {};
}
tree_t::subtree_point_t tree_t::select_subtree_traverse(const double terminal_chance, const double depth_multiplier) const
{
size_t index = 0;
double depth = 0;
double exit_chance = 0;
while (true)
{
const auto& info = m_program->get_operator_info(operations[index].id());
if (info.argc.is_terminal())
{
if (m_program->get_random().choice(terminal_chance))
return {static_cast<ptrdiff_t>(index), info.return_type};
index = 0;
depth = 0;
exit_chance = 0;
continue;
}
if (m_program->get_random().choice(exit_chance))
return {static_cast<ptrdiff_t>(index), info.return_type};
const auto child = m_program->get_random().get_u32(0, info.argc.argc);
index++;
for (u32 i = 0; i < child; i++)
index = find_endpoint(static_cast<ptrdiff_t>(index));
++depth;
exit_chance = 1.0 - (1.0 / (1 + depth * depth_multiplier * 0.5));
}
}
std::optional<tree_t::subtree_point_t> tree_t::select_subtree_traverse(const type_id type, const u32 max_tries, const double terminal_chance,
const double depth_multiplier) const
{
for (u32 i = 0; i < max_tries; ++i)
{
if (const auto tree = select_subtree_traverse(terminal_chance, depth_multiplier); tree.type == type)
return tree;
}
return {};
}
void tree_t::copy_subtree(const subtree_point_t point, const ptrdiff_t extent, tracked_vector<op_container_t>& operators, stack_allocator& stack)
{
const auto point_begin_itr = operations.begin() + point.pos;
const auto point_end_itr = operations.begin() + extent;
const size_t after_bytes = accumulate_type_sizes(point_end_itr, operations.end());
const size_t ops = std::distance(point_begin_itr, point_end_itr);
operators.reserve(operators.size() + ops);
// TODO something better!
for (size_t i = 0; i < ops; ++i)
operators.emplace_back(0, 0, false, operator_special_flags{});
size_t for_bytes = 0;
size_t pos = 0;
for (auto& it : iterate(point_begin_itr, point_end_itr).rev())
{
if (it.is_value())
{
for_bytes += it.type_size();
if (it.get_flags().is_ephemeral() && it.has_ephemeral_drop())
{
auto [_, ptr] = values.access_pointer(for_bytes + after_bytes, it.type_size());
++*ptr;
}
}
operators[operators.size() - 1 - (pos++)] = it;
}
stack.copy_from(values, for_bytes, after_bytes);
}
void tree_t::swap_subtrees(const subtree_point_t our_subtree, tree_t& other_tree, const subtree_point_t other_subtree)
{
const auto c1_subtree_begin_itr = operations.begin() + our_subtree.pos;
const auto c1_subtree_end_itr = operations.begin() + find_endpoint(our_subtree.pos);
const auto c2_subtree_begin_itr = other_tree.operations.begin() + other_subtree.pos;
const auto c2_subtree_end_itr = other_tree.operations.begin() + other_tree.find_endpoint(other_subtree.pos);
thread_local tracked_vector<op_container_t> c1_subtree_operators;
thread_local tracked_vector<op_container_t> c2_subtree_operators;
c1_subtree_operators.clear();
c2_subtree_operators.clear();
c1_subtree_operators.reserve(std::distance(c1_subtree_begin_itr, c1_subtree_end_itr));
c2_subtree_operators.reserve(std::distance(c2_subtree_begin_itr, c2_subtree_end_itr));
// i don't think this is required for swapping values, since the total number of additions is net zero
// the tree isn't destroyed at any point.
size_t c1_subtree_bytes = 0;
for (const auto& it : iterate(c1_subtree_begin_itr, c1_subtree_end_itr))
{
if (it.is_value())
{
// if (it.get_flags().is_ephemeral() && it.has_ephemeral_drop())
// {
// auto& ptr = values.access_pointer_forward(for_our_bytes, it.type_size());
// ++*ptr;
// }
c1_subtree_bytes += it.type_size();
}
c1_subtree_operators.push_back(it);
}
size_t c2_subtree_bytes = 0;
for (const auto& it : iterate(c2_subtree_begin_itr, c2_subtree_end_itr))
{
if (it.is_value())
{
// if (it.get_flags().is_ephemeral() && it.has_ephemeral_drop())
// {
// auto& ptr = values.access_pointer_forward(for_other_bytes, it.type_size());
// ++*ptr;
// }
c2_subtree_bytes += it.type_size();
}
c2_subtree_operators.push_back(it);
}
const size_t c1_stack_after_bytes = accumulate_type_sizes(c1_subtree_end_itr, operations.end());
const size_t c2_stack_after_bytes = accumulate_type_sizes(c2_subtree_end_itr, other_tree.operations.end());
const auto c1_total = static_cast<ptrdiff_t>(c1_stack_after_bytes + c1_subtree_bytes);
const auto c2_total = static_cast<ptrdiff_t>(c2_stack_after_bytes + c2_subtree_bytes);
const auto copy_ptr_c1 = get_thread_pointer_for_size<struct c1_t>(c1_total);
const auto copy_ptr_c2 = get_thread_pointer_for_size<struct c2_t>(c2_total);
values.reserve(values.bytes_in_head() - c1_subtree_bytes + c2_subtree_bytes);
other_tree.values.reserve(other_tree.values.bytes_in_head() - c2_subtree_bytes + c1_subtree_bytes);
values.copy_to(copy_ptr_c1, c1_total);
values.pop_bytes(c1_total);
other_tree.values.copy_to(copy_ptr_c2, c2_total);
other_tree.values.pop_bytes(c2_total);
other_tree.values.copy_from(copy_ptr_c1, c1_subtree_bytes);
other_tree.values.copy_from(copy_ptr_c2 + c2_subtree_bytes, c2_stack_after_bytes);
values.copy_from(copy_ptr_c2, c2_subtree_bytes);
values.copy_from(copy_ptr_c1 + c1_subtree_bytes, c1_stack_after_bytes);
// now swap the operators
// auto insert_point_c1 = c1_subtree_begin_itr - 1;
// auto insert_point_c2 = c2_subtree_begin_itr - 1;
// invalidates [begin, end()) so the insert points should be fine
auto insert_point_c1 = operations.erase(c1_subtree_begin_itr, c1_subtree_end_itr);
auto insert_point_c2 = other_tree.operations.erase(c2_subtree_begin_itr, c2_subtree_end_itr);
operations.insert(insert_point_c1, c2_subtree_operators.begin(), c2_subtree_operators.end());
other_tree.operations.insert(insert_point_c2, c1_subtree_operators.begin(), c1_subtree_operators.end());
}
void tree_t::replace_subtree(const subtree_point_t point, const ptrdiff_t extent, tree_t& other_tree)
{
const auto point_begin_itr = operations.begin() + point.pos;
const auto point_end_itr = operations.begin() + extent;
const size_t after_bytes = accumulate_type_sizes(point_end_itr, operations.end());
size_t for_bytes = 0;
for (auto& it : iterate(point_begin_itr, point_end_itr).rev())
{
if (it.is_value())
{
for_bytes += it.type_size();
if (it.get_flags().is_ephemeral() && it.has_ephemeral_drop())
{
auto [val, ptr] = values.access_pointer(for_bytes + after_bytes, it.type_size());
--*ptr;
if (*ptr == 0)
handle_ptr_empty(ptr, val, it.id());
}
}
}
auto insert = operations.erase(point_begin_itr, point_end_itr);
const auto ptr = get_thread_pointer_for_size<struct replace>(after_bytes);
values.copy_to(ptr, after_bytes);
values.pop_bytes(after_bytes + for_bytes);
size_t copy_bytes = 0;
for (const auto& v : other_tree.operations)
{
if (v.is_value())
{
if (v.get_flags().is_ephemeral() && v.has_ephemeral_drop())
{
auto [_, pointer] = other_tree.values.access_pointer_forward(copy_bytes, v.type_size());
++*pointer;
}
copy_bytes += v.type_size();
}
insert = ++operations.emplace(insert, v);
}
values.insert(other_tree.values);
values.copy_from(ptr, after_bytes);
}
void tree_t::delete_subtree(const subtree_point_t point, const ptrdiff_t extent)
{
const auto point_begin_itr = operations.begin() + point.pos;
const auto point_end_itr = operations.begin() + extent;
const size_t after_bytes = accumulate_type_sizes(point_end_itr, operations.end());
size_t for_bytes = 0;
for (auto& it : iterate(point_begin_itr, point_end_itr).rev())
{
if (it.is_value())
{
for_bytes += it.type_size();
if (it.get_flags().is_ephemeral() && it.has_ephemeral_drop())
{
auto [val, ptr] = values.access_pointer(for_bytes + after_bytes, it.type_size());
--*ptr;
if (*ptr == 0)
handle_ptr_empty(ptr, val, it.id());
}
}
}
operations.erase(point_begin_itr, point_end_itr);
const auto ptr = get_thread_pointer_for_size<struct replace>(after_bytes);
values.copy_to(ptr, after_bytes);
values.pop_bytes(after_bytes + for_bytes);
values.copy_from(ptr, after_bytes);
}
ptrdiff_t tree_t::insert_subtree(const subtree_point_t point, tree_t& other_tree)
{
const size_t after_bytes = accumulate_type_sizes(operations.begin() + point.pos, operations.end());
byte_only_transaction_t transaction{*this, after_bytes};
auto insert = operations.begin() + point.pos;
size_t bytes = 0;
for (auto& it : iterate(other_tree.operations).rev())
{
if (it.is_value())
{
bytes += it.type_size();
if (it.get_flags().is_ephemeral() && it.has_ephemeral_drop())
{
auto [_, ptr] = other_tree.values.access_pointer(bytes, it.type_size());
++*ptr;
}
}
insert = operations.insert(insert, it);
}
values.insert(other_tree.values);
return static_cast<ptrdiff_t>(point.pos + other_tree.size());
}
ptrdiff_t tree_t::find_endpoint(ptrdiff_t start) const
{
i64 children_left = 0;
do
{
const auto& type = m_program->get_operator_info(operations[start].id());
// this is a child to someone
if (children_left != 0)
children_left--;
if (type.argc.argc > 0)
children_left += type.argc.argc;
start++;
}
while (children_left > 0);
return start;
}
tree_t& tree_t::get_thread_local(gp_program& program)
{
thread_local tree_t tree{program};
tree.clear(program);
return tree;
}
void tree_t::handle_operator_inserted(const op_container_t& op)
{
if (m_program->is_operator_ephemeral(op.id()))
{
// Ephemeral values have corresponding insertions into the stack
m_program->get_operator_info(op.id()).func(nullptr, values, values);
if (m_program->operator_has_ephemeral_drop(op.id()))
{
auto [_, ptr] = values.access_pointer(op.type_size(), op.type_size());
ptr = new std::atomic_uint64_t(1);
ptr.bit(0, true);
}
}
}
void tree_t::handle_ptr_empty(const mem::pointer_storage<std::atomic_uint64_t>& ptr, u8* data, const operator_id id) const
{
m_program->get_destroy_func(id)(detail::destroy_t::RETURN, data);
delete ptr.get();
// BLT_INFO("Deleting pointer!");
}
evaluation_context& tree_t::evaluate(void* ptr) const
{
return m_program->get_eval_func()(*this, ptr);
}
bool tree_t::check(void* context) const
{
size_t bytes_expected = 0;
const auto bytes_size = values.size().total_used_bytes;
for (const auto& op : operations)
{
if (op.is_value())
bytes_expected += op.type_size();
}
if (bytes_expected != bytes_size)
{
BLT_ERROR("Stack state: {}", values.size());
BLT_ERROR("Child tree bytes {} vs expected {}, difference: {}", bytes_size, bytes_expected,
static_cast<ptrdiff_t>(bytes_expected) - static_cast<ptrdiff_t>(bytes_size));
BLT_ERROR("Amount of bytes in stack doesn't match the number of bytes expected for the operations");
return false;
}
size_t total_produced = 0;
size_t total_consumed = 0;
size_t index = 0;
try
{
// copy the initial values
evaluation_context results{};
auto value_stack = values;
auto& values_process = results.values;
for (const auto& operation : iterate(operations).rev())
{
++index;
if (operation.is_value())
{
value_stack.transfer_bytes(values_process, operation.type_size());
total_produced += operation.type_size();
continue;
}
auto& info = m_program->get_operator_info(operation.id());
for (auto& arg : info.argument_types)
total_consumed += m_program->get_typesystem().get_type(arg).size();
m_program->get_operator_info(operation.id()).func(context, values_process, values_process);
total_produced += m_program->get_typesystem().get_type(info.return_type).size();
}
const auto v1 = results.values.bytes_in_head();
const auto v2 = static_cast<ptrdiff_t>(operations.front().type_size());
// ephemeral don't need to be dropped as there are no copies which matter when checking the tree
if (!operations.front().get_flags().is_ephemeral())
m_program->get_destroy_func(operations.front().id())(detail::destroy_t::RETURN, results.values.from(operations.front().type_size()));
if (v1 != v2)
{
const auto vd = std::abs(v1 - v2);
BLT_ERROR("found {} bytes expected {} bytes, total difference: {}", v1, v2, vd);
BLT_ERROR("Total Produced {} || Total Consumed {} || Total Difference {}", total_produced, total_consumed,
std::abs(static_cast<blt::ptrdiff_t>(total_produced) - static_cast<blt::ptrdiff_t>(total_consumed)));
return false;
}
}
catch (std::exception& e)
{
BLT_ERROR("Exception occurred \"{}\"", e.what());
BLT_ERROR("Total Produced {} || Total Consumed {} || Total Difference {}", total_produced, total_consumed,
std::abs(static_cast<blt::ptrdiff_t>(total_produced) - static_cast<blt::ptrdiff_t>(total_consumed)));
BLT_ERROR("We failed at index {}", index);
return false;
}
return true;
}
void tree_t::find_child_extends(tracked_vector<child_t>& vec, const size_t parent_node, const size_t argc) const
{
BLT_ASSERT_MSG(vec.empty(), "Vector to find_child_extends should be empty!");
while (vec.size() < argc)
{
const auto current_point = vec.size();
child_t prev; // NOLINT
if (current_point == 0)
{
// first child.
prev = {
static_cast<ptrdiff_t>(parent_node + 1),
find_endpoint(static_cast<ptrdiff_t>(parent_node + 1))
};
vec.push_back(prev);
continue;
}
prev = vec[current_point - 1];
child_t next = {prev.end, find_endpoint(prev.end)};
vec.push_back(next);
}
}
void tree_t::clear(gp_program& program)
{
auto* f = &program;
if (&program != m_program)
m_program = f;
size_t total_bytes = 0;
for (const auto& op : iterate(operations))
{
if (op.is_value())
{
if (op.get_flags().is_ephemeral() && op.has_ephemeral_drop())
{
auto [val, ptr] = values.access_pointer_forward(total_bytes, op.type_size());
--*ptr;
if (*ptr == 0)
handle_ptr_empty(ptr, val, op.id());
}
total_bytes += op.type_size();
}
}
operations.clear();
values.reset();
}
void tree_t::insert_operator(const size_t index, const op_container_t& container)
{
if (container.get_flags().is_ephemeral())
{
byte_only_transaction_t move{*this, total_value_bytes(index)};
handle_operator_inserted(container);
}
operations.insert(operations.begin() + static_cast<ptrdiff_t>(index), container);
}
tree_t::subtree_point_t tree_t::subtree_from_point(ptrdiff_t point) const
{
return {point, m_program->get_operator_info(operations[point].id()).return_type};
}
void tree_t::modify_operator(const size_t point, operator_id new_id, std::optional<type_id> return_type)
{
if (!return_type)
return_type = m_program->get_operator_info(new_id).return_type;
byte_only_transaction_t move_data{*this};
if (operations[point].is_value())
{
const size_t after_bytes = accumulate_type_sizes(operations.begin() + static_cast<ptrdiff_t>(point) + 1, operations.end());
move_data.move(after_bytes);
if (operations[point].get_flags().is_ephemeral() && operations[point].has_ephemeral_drop())
{
auto [val, ptr] = values.access_pointer(operations[point].type_size(), operations[point].type_size());
--*ptr;
if (*ptr == 0)
handle_ptr_empty(ptr, val, operations[point].id());
}
values.pop_bytes(operations[point].type_size());
}
operations[point] = {
m_program->get_typesystem().get_type(*return_type).size(),
new_id,
m_program->is_operator_ephemeral(new_id),
m_program->get_operator_flags(new_id)
};
if (operations[point].get_flags().is_ephemeral())
{
if (move_data.empty())
{
const size_t after_bytes = accumulate_type_sizes(operations.begin() + static_cast<ptrdiff_t>(point) + 1, operations.end());
move_data.move(after_bytes);
}
handle_operator_inserted(operations[point]);
}
}
}