blt-gp/include/blt/gp/fwdecl.h

370 lines
12 KiB
C++

#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef BLT_GP_FWDECL_H
#define BLT_GP_FWDECL_H
#include <functional>
#include <blt/std/logging.h>
#include <blt/std/types.h>
#include <blt/gp/stats.h>
#include <ostream>
#include <cstdlib>
#include <mutex>
#include <atomic>
#include <blt/std/mmap.h>
namespace blt::gp
{
#ifdef BLT_TRACK_ALLOCATIONS
inline allocation_tracker_t tracker;
// population gen specifics
inline call_tracker_t crossover_calls;
inline call_tracker_t mutation_calls;
inline call_tracker_t reproduction_calls;
inline call_tracker_t crossover_allocations;
inline call_tracker_t mutation_allocations;
inline call_tracker_t reproduction_allocations;
// for evaluating fitness
inline call_tracker_t evaluation_calls;
inline call_tracker_t evaluation_allocations;
#endif
class gp_program;
class type;
struct operator_id;
struct type_id;
class type_provider;
struct op_container_t;
class evaluation_context;
class tree_t;
struct individual_t;
class population_t;
class tree_generator_t;
class grow_generator_t;
class full_generator_t;
class stack_allocator;
template<typename T>
class tracked_allocator_t;
#ifdef BLT_TRACK_ALLOCATIONS
template<typename T>
using tracked_vector = std::vector<T, tracked_allocator_t<T>>;
#else
template<typename T>
using tracked_vector = std::vector<T>;
#endif
// using operation_vector_t = tracked_vector<op_container_t>;
// using individual_vector_t = tracked_vector<individual_t, tracked_allocator_t<individual_t>>;
// using tree_vector_t = tracked_vector<tree_t>;
class aligned_allocator
{
public:
void* allocate(blt::size_t bytes) // NOLINT
{
#ifdef BLT_TRACK_ALLOCATIONS
tracker.allocate(bytes);
// std::cout << "Hey our aligned allocator allocated " << bytes << " bytes!\n";
#endif
return std::aligned_alloc(8, bytes);
}
void deallocate(void* ptr, blt::size_t bytes) // NOLINT
{
if (ptr == nullptr)
return;
#ifdef BLT_TRACK_ALLOCATIONS
tracker.deallocate(bytes);
// std::cout << "[Hey our aligned allocator deallocated " << bytes << " bytes!]\n";
#else
(void) bytes;
#endif
std::free(ptr);
}
};
template<typename Alloc = blt::aligned_huge_allocator>
class variable_bump_allocator
{
public:
explicit variable_bump_allocator(blt::size_t default_block_size = BLT_2MB_SIZE): default_block_size(default_block_size)
{}
void* allocate(blt::size_t bytes)
{
#ifdef BLT_TRACK_ALLOCATIONS
tracker.allocate(bytes);
#endif
std::scoped_lock lock(mutex);
if (head == nullptr || head->remaining_bytes_in_block() < static_cast<blt::ptrdiff_t>(bytes))
{
push_block(bytes);
}
auto ptr = head->metadata.offset;
head->metadata.offset += bytes;
++head->metadata.allocated_objects;
return ptr;
}
void deallocate(void* ptr, blt::size_t bytes)
{
if (ptr == nullptr)
return;
#ifdef BLT_TRACK_ALLOCATIONS
tracker.deallocate(bytes);
#else
(void) bytes;
#endif
std::scoped_lock lock(mutex);
block_t* blk = to_block(ptr);
--blk->metadata.allocated_objects;
if (blk->metadata.allocated_objects == 0)
{
if (blk->metadata.has_deallocated)
alloc.deallocate(blk, blk->metadata.size);
else
{
if (head == blk)
head = head->metadata.next;
else
{
auto prev = head;
auto next = head->metadata.next;
while (next != blk)
{
prev = next;
next = next->metadata.next;
}
prev->metadata.next = next->metadata.next;
}
deallocated_blocks.push_back(blk);
}
}
}
~variable_bump_allocator()
{
std::scoped_lock lock(mutex);
for (auto* blk : deallocated_blocks)
{
alloc.deallocate(blk, blk->metadata.size);
}
auto cur = head;
while (cur != nullptr)
{
auto* ptr = cur;
ptr->metadata.has_deallocated = true;
cur = cur->metadata.next;
}
head = nullptr;
}
private:
struct block_t
{
struct block_metadata_t
{
blt::size_t size;
blt::size_t allocated_objects : 63;
bool has_deallocated : 1;
block_t* next;
blt::u8* offset;
} metadata;
blt::u8 buffer[8]{};
explicit block_t(blt::size_t size): metadata{size, 0, false, nullptr, nullptr}
{
reset();
}
void reset()
{
metadata.offset = buffer;
metadata.allocated_objects = 0;
metadata.next = nullptr;
}
[[nodiscard]] blt::ptrdiff_t storage_size() const noexcept
{
return static_cast<blt::ptrdiff_t>(metadata.size - sizeof(typename block_t::block_metadata_t));
}
[[nodiscard]] blt::ptrdiff_t used_bytes_in_block() const noexcept
{
return static_cast<blt::ptrdiff_t>(metadata.offset - buffer);
}
[[nodiscard]] blt::ptrdiff_t remaining_bytes_in_block() const noexcept
{
return storage_size() - used_bytes_in_block();
}
};
static inline block_t* to_block(void* p)
{
return reinterpret_cast<block_t*>(reinterpret_cast<std::uintptr_t>(p) & static_cast<std::uintptr_t>(~(BLT_2MB_SIZE - 1)));
}
void push_block(blt::size_t bytes)
{
auto blk = allocate_block(bytes);
BLT_TRACE("Allocated block %p", blk);
blk->metadata.next = head;
head = blk;
}
inline block_t* allocate_block(blt::size_t bytes)
{
if (!deallocated_blocks.empty())
{
block_t* blk = deallocated_blocks.back();
deallocated_blocks.pop_back();
blk->reset();
return blk;
}
auto size = align_size_to(bytes + sizeof(typename block_t::block_metadata_t), default_block_size);
auto* ptr = static_cast<block_t*>(alloc.allocate(size));
new(ptr) block_t{size};
return ptr;
}
private:
block_t* head = nullptr;
std::mutex mutex;
std::vector<block_t*> deallocated_blocks;
blt::size_t default_block_size;
Alloc alloc;
};
template<typename T>
class tracked_allocator_t
{
public:
using value_type = T;
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using const_pointer = const T*;
using void_pointer = void*;
using const_void_pointer = const void*;
using difference_type = blt::ptrdiff_t;
using size_type = blt::size_t;
template<class U>
struct rebind
{
typedef tracked_allocator_t<U> other;
};
pointer allocate(size_type n)
{
#ifdef BLT_TRACK_ALLOCATIONS
tracker.allocate(n * sizeof(T));
// std::cout << "Hey our tracked allocator allocated " << (n * sizeof(T)) << " bytes!\n";
#endif
return static_cast<pointer>(std::malloc(n * sizeof(T)));
}
pointer allocate(size_type n, const_void_pointer)
{
return allocate(n);
}
void deallocate(pointer p, size_type n)
{
#ifdef BLT_TRACK_ALLOCATIONS
tracker.deallocate(n * sizeof(T));
// std::cout << "[Hey our tracked allocator deallocated " << (n * sizeof(T)) << " bytes!]\n";
#else
(void) n;
#endif
std::free(p);
}
template<class U, class... Args>
void construct(U* p, Args&& ... args)
{
new(p) T(std::forward<Args>(args)...);
}
template<class U>
void destroy(U* p)
{
p->~T();
}
[[nodiscard]] size_type max_size() const noexcept
{
return std::numeric_limits<size_type>::max();
}
};
template<class T1, class T2>
inline static bool operator==(const tracked_allocator_t<T1>& lhs, const tracked_allocator_t<T2>& rhs) noexcept
{
return &lhs == &rhs;
}
template<class T1, class T2>
inline static bool operator!=(const tracked_allocator_t<T1>& lhs, const tracked_allocator_t<T2>& rhs) noexcept
{
return &lhs != &rhs;
}
namespace detail
{
class operator_storage_test;
// context*, read stack, write stack
using operator_func_t = std::function<void(void*, stack_allocator&, stack_allocator&)>;
using eval_func_t = std::function<evaluation_context&(const tree_t& tree, void* context)>;
// debug function,
using print_func_t = std::function<void(std::ostream&, stack_allocator&)>;
enum class destroy_t
{
ARGS,
RETURN
};
using destroy_func_t = std::function<void(destroy_t, stack_allocator&)>;
using const_op_iter_t = tracked_vector<op_container_t>::const_iterator;
using op_iter_t = tracked_vector<op_container_t>::iterator;
}
}
#endif //BLT_GP_FWDECL_H