blt-gp/include/blt/gp/program.h

867 lines
37 KiB
C++

#pragma once
/*
* Copyright (C) 2024 Brett Terpstra
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef BLT_GP_PROGRAM_H
#define BLT_GP_PROGRAM_H
#include <cstddef>
#include <functional>
#include <type_traits>
#include <string_view>
#include <string>
#include <utility>
#include <iostream>
#include <algorithm>
#include <memory>
#include <array>
#include <thread>
#include <mutex>
#include <atomic>
#include <condition_variable>
#include <stdexcept>
#include <blt/std/ranges.h>
#include <blt/std/hashmap.h>
#include <blt/std/types.h>
#include <blt/std/utility.h>
#include <blt/meta/meta.h>
#include <blt/std/memory.h>
#include <blt/std/thread.h>
#include <blt/gp/fwdecl.h>
#include <blt/gp/typesystem.h>
#include <blt/gp/operations.h>
#include <blt/gp/transformers.h>
#include <blt/gp/selection.h>
#include <blt/gp/tree.h>
#include <blt/gp/stack.h>
#include <blt/gp/config.h>
#include <blt/gp/random.h>
#include "blt/format/format.h"
namespace blt::gp
{
struct argc_t
{
blt::u32 argc = 0;
blt::u32 argc_context = 0;
[[nodiscard]] bool is_terminal() const
{
return argc == 0;
}
};
struct operator_info_t
{
// types of the arguments
tracked_vector<type_id> argument_types;
// return type of this operator
type_id return_type;
// number of arguments for this operator
argc_t argc;
// per operator function callable (slow)
detail::operator_func_t func;
};
struct operator_metadata_t
{
blt::size_t arg_size_bytes = 0;
blt::size_t return_size_bytes = 0;
argc_t argc{};
};
struct program_operator_storage_t
{
// indexed from return TYPE ID, returns index of operator
blt::expanding_buffer<tracked_vector<operator_id>> terminals;
blt::expanding_buffer<tracked_vector<operator_id>> non_terminals;
blt::expanding_buffer<tracked_vector<std::pair<operator_id, blt::size_t>>> operators_ordered_terminals;
// indexed from OPERATOR ID (operator number)
blt::hashset_t<operator_id> ephemeral_leaf_operators;
tracked_vector<operator_info_t> operators;
tracked_vector<operator_metadata_t> operator_metadata;
tracked_vector<detail::print_func_t> print_funcs;
tracked_vector<detail::destroy_func_t> destroy_funcs;
tracked_vector<std::optional<std::string_view>> names;
detail::eval_func_t eval_func;
type_provider system;
};
template <typename Context = detail::empty_t>
class operator_builder
{
friend class gp_program;
friend class blt::gp::detail::operator_storage_test;
public:
explicit operator_builder() = default;
template <typename... Operators>
program_operator_storage_t& build(Operators&... operators)
{
blt::size_t largest_args = 0;
blt::size_t largest_returns = 0;
blt::u32 largest_argc = 0;
operator_metadata_t meta;
((meta = add_operator(operators), largest_argc = std::max(meta.argc.argc, largest_argc),
largest_args = std::max(meta.arg_size_bytes, largest_args), largest_returns = std::max(meta.return_size_bytes,
largest_returns)), ...);
// largest = largest * largest_argc;
blt::size_t largest = largest_args * largest_argc * largest_returns * largest_argc;
storage.eval_func = [&operators..., largest](const tree_t& tree, void* context) -> evaluation_context& {
const auto& ops = tree.get_operations();
const auto& vals = tree.get_values();
static thread_local evaluation_context results{};
results.values.reset();
results.values.reserve(largest);
blt::size_t total_so_far = 0;
blt::size_t op_pos = 0;
for (const auto& operation : blt::reverse_iterate(ops.begin(), ops.end()))
{
op_pos++;
if (operation.is_value)
{
total_so_far += stack_allocator::aligned_size(operation.type_size);
results.values.copy_from(vals.from(total_so_far), stack_allocator::aligned_size(operation.type_size));
continue;
}
call_jmp_table(operation.id, context, results.values, results.values, operators...);
}
return results;
};
blt::hashset_t<type_id> has_terminals;
for (const auto& v : blt::enumerate(storage.terminals))
{
if (!v.second.empty())
has_terminals.insert(v.first);
}
for (const auto& op_r : blt::enumerate(storage.non_terminals))
{
if (op_r.second.empty())
continue;
auto return_type = op_r.first;
tracked_vector<std::pair<operator_id, blt::size_t>> ordered_terminals;
for (const auto& op : op_r.second)
{
// count number of terminals
blt::size_t terminals = 0;
for (const auto& type : storage.operators[op].argument_types)
{
if (has_terminals.contains(type))
terminals++;
}
ordered_terminals.emplace_back(op, terminals);
}
bool found_terminal_inputs = false;
bool matches_argc = false;
for (const auto& terms : ordered_terminals)
{
if (terms.second == storage.operators[terms.first].argc.argc)
matches_argc = true;
if (terms.second != 0)
found_terminal_inputs = true;
if (matches_argc && found_terminal_inputs)
break;
}
if (!found_terminal_inputs)
BLT_ABORT(("Failed to find function with terminal arguments for return type " + std::to_string(return_type)).c_str());
if (!matches_argc)
{
BLT_ABORT(("Failed to find a function which purely translates types "
"(that is all input types are terminals) for return type " + std::to_string(return_type)).c_str());
}
std::sort(ordered_terminals.begin(), ordered_terminals.end(), [](const auto& a, const auto& b)
{
return a.second > b.second;
});
auto first_size = *ordered_terminals.begin();
auto iter = ordered_terminals.begin();
while (++iter != ordered_terminals.end() && iter->second == first_size.second)
{
}
ordered_terminals.erase(iter, ordered_terminals.end());
storage.operators_ordered_terminals[return_type] = ordered_terminals;
}
return storage;
}
program_operator_storage_t&& grab()
{
return std::move(storage);
}
private:
template <typename RawFunction, typename Return, typename... Args>
auto add_operator(operation_t<RawFunction, Return(Args...)>& op)
{
// check for types we can register
(storage.system.register_type<Args>(), ...);
storage.system.register_type<Return>();
auto return_type_id = storage.system.get_type<Return>().id();
auto operator_id = blt::gp::operator_id(storage.operators.size());
op.id = operator_id;
operator_info_t info;
if constexpr (sizeof...(Args) > 0)
{
(add_non_context_argument<detail::remove_cv_ref<Args>>(info.argument_types), ...);
}
info.argc.argc_context = info.argc.argc = sizeof...(Args);
info.return_type = return_type_id;
info.func = op.template make_callable<Context>();
((std::is_same_v<detail::remove_cv_ref<Args>, Context> ? info.argc.argc -= 1 : (blt::size_t)nullptr), ...);
auto& operator_list = info.argc.argc == 0 ? storage.terminals : storage.non_terminals;
operator_list[return_type_id].push_back(operator_id);
BLT_ASSERT(info.argc.argc_context - info.argc.argc <= 1 && "Cannot pass multiple context as arguments!");
storage.operators.push_back(info);
operator_metadata_t meta;
if constexpr (sizeof...(Args) != 0)
{
meta.arg_size_bytes = (stack_allocator::aligned_size(sizeof(Args)) + ...);
}
meta.return_size_bytes = sizeof(Return);
meta.argc = info.argc;
storage.operator_metadata.push_back(meta);
storage.print_funcs.push_back([&op](std::ostream& out, stack_allocator& stack)
{
if constexpr (blt::meta::is_streamable_v<Return>)
{
out << stack.from<Return>(0);
(void)(op); // remove warning
}
else
{
out << "[Printing Value on '" << (op.get_name() ? *op.get_name() : "") << "' Not Supported!]";
}
});
storage.destroy_funcs.push_back([](detail::destroy_t type, stack_allocator& alloc)
{
switch (type)
{
case detail::destroy_t::ARGS:
alloc.call_destructors<Args...>();
break;
case detail::destroy_t::RETURN:
if constexpr (detail::has_func_drop_v<remove_cvref_t<Return>>)
{
alloc.from<detail::remove_cv_ref<Return>>(0).drop();
}
break;
}
});
storage.names.push_back(op.get_name());
if (op.is_ephemeral())
storage.ephemeral_leaf_operators.insert(operator_id);
return meta;
}
template <typename T>
void add_non_context_argument(decltype(operator_info_t::argument_types)& types)
{
if constexpr (!std::is_same_v<Context, detail::remove_cv_ref<T>>)
{
types.push_back(storage.system.get_type<T>().id());
}
}
template <typename Operator>
static void execute(void* context, stack_allocator& write_stack, stack_allocator& read_stack, Operator& operation)
{
if constexpr (std::is_same_v<detail::remove_cv_ref<typename Operator::First_Arg>, Context>)
{
write_stack.push(operation(context, read_stack));
}
else
{
write_stack.push(operation(read_stack));
}
}
template <blt::size_t id, typename Operator>
static bool call(blt::size_t op, void* context, stack_allocator& write_stack, stack_allocator& read_stack, Operator& operation)
{
if (id == op)
{
execute(context, write_stack, read_stack, operation);
return false;
}
return true;
}
template <typename... Operators, size_t... operator_ids>
static void call_jmp_table_internal(size_t op, void* context, stack_allocator& write_stack, stack_allocator& read_stack,
std::integer_sequence<size_t, operator_ids...>, Operators&... operators)
{
if (op >= sizeof...(operator_ids))
{
BLT_UNREACHABLE;
}
(call<operator_ids>(op, context, write_stack, read_stack, operators) && ...);
}
template <typename... Operators>
static void call_jmp_table(size_t op, void* context, stack_allocator& write_stack, stack_allocator& read_stack,
Operators&... operators)
{
call_jmp_table_internal(op, context, write_stack, read_stack, std::index_sequence_for<Operators...>(), operators...);
}
program_operator_storage_t storage;
};
class gp_program
{
public:
/**
* Note about context size: This is required as context is passed to every operator in the GP tree, this context will be provided by your
* call to one of the evaluator functions. This was the nicest way to provide this as C++ lacks reflection
*
* @param seed
*/
explicit gp_program(blt::u64 seed): seed_func([seed] { return seed; })
{
create_threads();
}
explicit gp_program(blt::u64 seed, const prog_config_t& config): seed_func([seed] { return seed; }), config(config)
{
create_threads();
}
explicit gp_program(std::function<blt::u64()> seed_func): seed_func(std::move(seed_func))
{
create_threads();
}
explicit gp_program(std::function<blt::u64()> seed_func, const prog_config_t& config): seed_func(std::move(seed_func)), config(config)
{
create_threads();
}
~gp_program()
{
thread_helper.lifetime_over = true;
thread_helper.barrier.notify_all();
thread_helper.thread_function_condition.notify_all();
for (auto& thread : thread_helper.threads)
{
if (thread->joinable())
thread->join();
}
}
void create_next_generation()
{
#ifdef BLT_TRACK_ALLOCATIONS
auto gen_alloc = blt::gp::tracker.start_measurement();
#endif
// should already be empty
thread_helper.next_gen_left.store(config.population_size, std::memory_order_release);
(*thread_execution_service)(0);
#ifdef BLT_TRACK_ALLOCATIONS
blt::gp::tracker.stop_measurement(gen_alloc);
gen_alloc.pretty_print("Generation");
#endif
}
void next_generation()
{
std::swap(current_pop, next_pop);
++current_generation;
}
void evaluate_fitness()
{
#ifdef BLT_TRACK_ALLOCATIONS
auto fitness_alloc = blt::gp::tracker.start_measurement();
#endif
evaluate_fitness_internal();
#ifdef BLT_TRACK_ALLOCATIONS
blt::gp::tracker.stop_measurement(fitness_alloc);
fitness_alloc.pretty_print("Fitness");
evaluation_calls.call();
evaluation_calls.set_value(std::max(evaluation_calls.get_value(), fitness_alloc.getAllocatedByteDifference()));
if (fitness_alloc.getAllocatedByteDifference() > 0)
{
evaluation_allocations.call(fitness_alloc.getAllocatedByteDifference());
}
#endif
}
void reset_program(type_id root_type, bool eval_fitness_now = true)
{
current_generation = 0;
current_pop = config.pop_initializer.get().generate(
{*this, root_type, config.population_size, config.initial_min_tree_size, config.initial_max_tree_size});
next_pop = population_t(current_pop);
BLT_ASSERT_MSG(current_pop.get_individuals().size() == config.population_size,
("cur pop size: " + std::to_string(current_pop.get_individuals().size())).c_str());
BLT_ASSERT_MSG(next_pop.get_individuals().size() == config.population_size,
("next pop size: " + std::to_string(next_pop.get_individuals().size())).c_str());
if (eval_fitness_now)
evaluate_fitness_internal();
}
void kill()
{
thread_helper.lifetime_over = true;
}
/**
* takes in a reference to a function for the fitness evaluation function (must return a value convertable to double)
* The lambda must accept a tree for evaluation, and an index (current tree)
*
* tree_t& current_tree, blt::size_t index_of_tree
*
* Container must be concurrently accessible from multiple threads using operator[]
*
* NOTE: 0 is considered the best, in terms of standardized fitness
*/
template <typename FitnessFunc, typename Crossover, typename Mutation, typename Reproduction, typename CreationFunc = decltype(
default_next_pop_creator<Crossover, Mutation, Reproduction>)>
void generate_population(type_id root_type, FitnessFunc& fitness_function,
Crossover& crossover_selection, Mutation& mutation_selection, Reproduction& reproduction_selection,
CreationFunc& func = default_next_pop_creator<Crossover, Mutation, Reproduction>, bool eval_fitness_now = true)
{
using LambdaReturn = typename decltype(blt::meta::lambda_helper(fitness_function))::Return;
current_pop = config.pop_initializer.get().generate(
{*this, root_type, config.population_size, config.initial_min_tree_size, config.initial_max_tree_size});
next_pop = population_t(current_pop);
BLT_ASSERT_MSG(current_pop.get_individuals().size() == config.population_size,
("cur pop size: " + std::to_string(current_pop.get_individuals().size())).c_str());
BLT_ASSERT_MSG(next_pop.get_individuals().size() == config.population_size,
("next pop size: " + std::to_string(next_pop.get_individuals().size())).c_str());
if (config.threads == 1)
{
BLT_INFO("Starting with single thread variant!");
thread_execution_service = std::unique_ptr<std::function<void(blt::size_t)>>(new std::function(
[this, &fitness_function, &crossover_selection, &mutation_selection, &reproduction_selection, &func](blt::size_t)
{
if (thread_helper.evaluation_left > 0)
{
current_stats.normalized_fitness.clear();
double sum_of_prob = 0;
for (const auto& [index, ind] : blt::enumerate(current_pop.get_individuals()))
{
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
{
auto result = fitness_function(ind.tree, ind.fitness, index);
if (result)
fitness_should_exit = true;
}
else
fitness_function(ind.tree, ind.fitness, index);
if (ind.fitness.adjusted_fitness > current_stats.best_fitness)
current_stats.best_fitness = ind.fitness.adjusted_fitness;
if (ind.fitness.adjusted_fitness < current_stats.worst_fitness)
current_stats.worst_fitness = ind.fitness.adjusted_fitness;
current_stats.overall_fitness = current_stats.overall_fitness + ind.fitness.adjusted_fitness;
}
for (auto& ind : current_pop)
{
auto prob = (ind.fitness.adjusted_fitness / current_stats.overall_fitness);
current_stats.normalized_fitness.push_back(sum_of_prob + prob);
sum_of_prob += prob;
}
thread_helper.evaluation_left = 0;
}
if (thread_helper.next_gen_left > 0)
{
auto args = get_selector_args();
crossover_selection.pre_process(*this, current_pop);
mutation_selection.pre_process(*this, current_pop);
reproduction_selection.pre_process(*this, current_pop);
blt::size_t start = perform_elitism(args, next_pop);
while (start < config.population_size)
{
tree_t& c1 = next_pop.get_individuals()[start].tree;
tree_t* c2 = nullptr;
if (start + 1 < config.population_size)
c2 = &next_pop.get_individuals()[start + 1].tree;
start += func(args, crossover_selection, mutation_selection, reproduction_selection, c1, c2, fitness_function);
}
thread_helper.next_gen_left = 0;
}
}));
}
else
{
BLT_INFO("Starting thread execution service!");
std::scoped_lock lock(thread_helper.thread_function_control);
thread_execution_service = std::unique_ptr<std::function<void(blt::size_t)>>(new std::function(
[this, &fitness_function, &crossover_selection, &mutation_selection, &reproduction_selection, &func](blt::size_t id)
{
thread_helper.barrier.wait();
if (thread_helper.evaluation_left > 0)
{
while (thread_helper.evaluation_left > 0)
{
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.evaluation_left.load(std::memory_order_relaxed);
do
{
size = std::min(end, config.evaluation_size);
begin = end - size;
}
while (!thread_helper.evaluation_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
for (blt::size_t i = begin; i < end; i++)
{
auto& ind = current_pop.get_individuals()[i];
if constexpr (std::is_same_v<LambdaReturn, bool> || std::is_convertible_v<LambdaReturn, bool>)
{
auto result = fitness_function(ind.tree, ind.fitness, i);
if (result)
fitness_should_exit = true;
}
else
{
fitness_function(ind.tree, ind.fitness, i);
}
auto old_best = current_stats.best_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness > old_best &&
!current_stats.best_fitness.compare_exchange_weak(old_best, ind.fitness.adjusted_fitness,
std::memory_order_relaxed,
std::memory_order_relaxed))
{
}
auto old_worst = current_stats.worst_fitness.load(std::memory_order_relaxed);
while (ind.fitness.adjusted_fitness < old_worst &&
!current_stats.worst_fitness.compare_exchange_weak(old_worst, ind.fitness.adjusted_fitness,
std::memory_order_relaxed,
std::memory_order_relaxed))
{
}
auto old_overall = current_stats.overall_fitness.load(std::memory_order_relaxed);
while (!current_stats.overall_fitness.compare_exchange_weak(old_overall,
ind.fitness.adjusted_fitness + old_overall,
std::memory_order_relaxed,
std::memory_order_relaxed))
{
}
}
}
}
if (thread_helper.next_gen_left > 0)
{
auto args = get_selector_args();
if (id == 0)
{
current_stats.normalized_fitness.clear();
double sum_of_prob = 0;
for (auto& ind : current_pop)
{
auto prob = (ind.fitness.adjusted_fitness / current_stats.overall_fitness);
current_stats.normalized_fitness.push_back(sum_of_prob + prob);
sum_of_prob += prob;
}
crossover_selection.pre_process(*this, current_pop);
if (&crossover_selection != &mutation_selection)
mutation_selection.pre_process(*this, current_pop);
if (&crossover_selection != &reproduction_selection)
reproduction_selection.pre_process(*this, current_pop);
auto elite_amount = perform_elitism(args, next_pop);
thread_helper.next_gen_left -= elite_amount;
}
thread_helper.barrier.wait();
while (thread_helper.next_gen_left > 0)
{
blt::size_t size = 0;
blt::size_t begin = 0;
blt::size_t end = thread_helper.next_gen_left.load(std::memory_order_relaxed);
do
{
size = std::min(end, config.evaluation_size);
begin = end - size;
}
while (!thread_helper.next_gen_left.compare_exchange_weak(end, end - size,
std::memory_order::memory_order_relaxed,
std::memory_order::memory_order_relaxed));
while (begin != end)
{
auto index = config.elites + begin;
tree_t& c1 = next_pop.get_individuals()[index].tree;
tree_t* c2 = nullptr;
if (begin + 1 < end)
c2 = &next_pop.get_individuals()[index + 1].tree;
begin += func(args, crossover_selection, mutation_selection, reproduction_selection, c1, c2, fitness_function);
}
}
}
thread_helper.barrier.wait();
}));
thread_helper.thread_function_condition.notify_all();
}
if (eval_fitness_now)
evaluate_fitness_internal();
}
[[nodiscard]] bool should_terminate() const
{
return current_generation >= config.max_generations || fitness_should_exit;
}
[[nodiscard]] bool should_thread_terminate() const
{
return thread_helper.lifetime_over;
}
operator_id select_terminal(type_id id)
{
// we wanted a terminal, but could not find one, so we will select from a function that has a terminal
if (storage.terminals[id].empty())
return select_non_terminal_too_deep(id);
return get_random().select(storage.terminals[id]);
}
operator_id select_non_terminal(type_id id)
{
// non-terminal doesn't exist, return a terminal. This is useful for types that are defined only to have a random value, nothing more.
// was considering an std::optional<> but that would complicate the generator code considerably. I'll mark this as a TODO for v2
if (storage.non_terminals[id].empty())
return select_terminal(id);
return get_random().select(storage.non_terminals[id]);
}
operator_id select_non_terminal_too_deep(type_id id)
{
// this should probably be an error.
if (storage.operators_ordered_terminals[id].empty())
BLT_ABORT("An impossible state has been reached. Please consult the manual. Error 43");
return get_random().select(storage.operators_ordered_terminals[id]).first;
}
auto& get_current_pop()
{
return current_pop;
}
[[nodiscard]] random_t& get_random() const;
[[nodiscard]] type_provider& get_typesystem()
{
return storage.system;
}
[[nodiscard]] operator_info_t& get_operator_info(operator_id id)
{
return storage.operators[id];
}
[[nodiscard]] detail::print_func_t& get_print_func(operator_id id)
{
return storage.print_funcs[id];
}
[[nodiscard]] detail::destroy_func_t& get_destroy_func(operator_id id)
{
return storage.destroy_funcs[id];
}
[[nodiscard]] std::optional<std::string_view> get_name(operator_id id)
{
return storage.names[id];
}
[[nodiscard]] tracked_vector<operator_id>& get_type_terminals(type_id id)
{
return storage.terminals[id];
}
[[nodiscard]] tracked_vector<operator_id>& get_type_non_terminals(type_id id)
{
return storage.non_terminals[id];
}
[[nodiscard]] detail::eval_func_t& get_eval_func()
{
return storage.eval_func;
}
[[nodiscard]] auto get_current_generation() const
{
return current_generation.load();
}
[[nodiscard]] const auto& get_population_stats() const
{
return current_stats;
}
[[nodiscard]] bool is_operator_ephemeral(operator_id id)
{
return storage.ephemeral_leaf_operators.contains(static_cast<blt::size_t>(id));
}
void set_operations(program_operator_storage_t op)
{
storage = std::move(op);
}
template <blt::size_t size>
std::array<blt::size_t, size> get_best_indexes()
{
std::array<blt::size_t, size> arr;
tracked_vector<std::pair<blt::size_t, double>> values;
values.reserve(current_pop.get_individuals().size());
for (const auto& ind : blt::enumerate(current_pop.get_individuals()))
values.emplace_back(ind.first, ind.second.fitness.adjusted_fitness);
std::sort(values.begin(), values.end(), [](const auto& a, const auto& b)
{
return a.second > b.second;
});
for (blt::size_t i = 0; i < std::min(size, config.population_size); i++)
arr[i] = values[i].first;
for (blt::size_t i = std::min(size, config.population_size); i < size; i++)
arr[i] = 0;
return arr;
}
template <blt::size_t size>
auto get_best_trees()
{
return convert_array<std::array<std::reference_wrapper<individual_t>, size>>(get_best_indexes<size>(),
[this](auto&& arr, blt::size_t index) -> tree_t& {
return current_pop.get_individuals()[arr[index]].tree;
},
std::make_integer_sequence<blt::size_t, size>());
}
template <blt::size_t size>
auto get_best_individuals()
{
return convert_array<std::array<std::reference_wrapper<individual_t>, size>>(get_best_indexes<size>(),
[this](auto&& arr, blt::size_t index) -> individual_t& {
return current_pop.get_individuals()[arr[index]];
},
std::make_integer_sequence<blt::size_t, size>());
}
private:
selector_args get_selector_args()
{
return {*this, current_pop, current_stats, config, get_random()};
}
template <typename Return, blt::size_t size, typename Accessor, blt::size_t... indexes>
Return convert_array(std::array<blt::size_t, size>&& arr, Accessor&& accessor,
std::integer_sequence<blt::size_t, indexes...>)
{
return Return{accessor(arr, indexes)...};
}
void create_threads();
void evaluate_fitness_internal()
{
statistic_history.push_back(current_stats);
current_stats.clear();
thread_helper.evaluation_left.store(config.population_size, std::memory_order_release);
(*thread_execution_service)(0);
current_stats.average_fitness = current_stats.overall_fitness / static_cast<double>(config.population_size);
}
private:
program_operator_storage_t storage;
std::function<u64()> seed_func;
prog_config_t config{};
population_t current_pop;
population_t next_pop;
std::atomic_uint64_t current_generation = 0;
std::atomic_bool fitness_should_exit = false;
population_stats current_stats{};
tracked_vector<population_stats> statistic_history;
struct concurrency_storage
{
std::vector<std::unique_ptr<std::thread>> threads;
std::mutex thread_function_control{};
std::condition_variable thread_function_condition{};
std::atomic_uint64_t evaluation_left = 0;
std::atomic_uint64_t next_gen_left = 0;
std::atomic_bool lifetime_over = false;
blt::barrier barrier;
explicit concurrency_storage(blt::size_t threads): barrier(threads, lifetime_over)
{
}
} thread_helper{config.threads == 0 ? std::thread::hardware_concurrency() : config.threads};
std::unique_ptr<std::function<void(blt::size_t)>> thread_execution_service = nullptr;
};
}
#endif //BLT_GP_PROGRAM_H