#pragma once /* * Copyright (C) 2024 Brett Terpstra * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef GRAPHS_GRAPH_H #define GRAPHS_GRAPH_H #include #include #include #include namespace im = ImGui; struct bounding_box { int min_x = 0; int min_y = 0; int max_x = 0; int max_y = 0; bounding_box(const int min_x, const int min_y, const int max_x, const int max_y): min_x(min_x), min_y(min_y), max_x(max_x), max_y(max_y) { } bool is_screen = true; }; class graph_t { private: std::vector nodes; blt::hashset_t edges; blt::hashmap_t> connected_nodes; bool sim = false; bool run_infinitely = true; float sim_speed = 1; float threshold = 0; float max_force_last = 1; int current_iterations = 0; int max_iterations = 5000; std::unique_ptr equation; static constexpr float POINT_SIZE = 35; blt::i32 selected_node = -1; blt::i32 highlighted_node = -1; blt::quad_easing easing; blt::quint_easing highlight_easing; void create_random_graph(bounding_box bb, blt::size_t min_nodes, blt::size_t max_nodes, blt::f64 connectivity, blt::f64 scaling_connectivity, blt::f64 distance_factor); public: graph_t() = default; void make_new(const bounding_box& bb, const blt::size_t min_nodes, const blt::size_t max_nodes, const blt::f64 connectivity) { create_random_graph(bb, min_nodes, max_nodes, connectivity, 0, 25); use_Eades(); } void reset(const bounding_box& bb, const blt::size_t min_nodes, const blt::size_t max_nodes, const blt::f64 connectivity, const blt::f64 scaling_connectivity, const blt::f64 distance_factor) { sim = false; current_iterations = 0; max_force_last = 1.0; nodes.clear(); edges.clear(); connected_nodes.clear(); create_random_graph(bb, min_nodes, max_nodes, connectivity, scaling_connectivity, distance_factor); } void connect(const blt::u64 n1, const blt::u64 n2) { edges.insert(edge{n1, n2}); connected_nodes[n1].insert(n2); connected_nodes[n2].insert(n1); } [[nodiscard]] bool connected(blt::u64 e1, blt::u64 e2) const { return edges.contains({e1, e2}); } void render(); void reset_mouse_drag() { if (selected_node != -1) { nodes[selected_node].setOutlineColor(color::POINT_OUTLINE_COLOR); easing.reset(); } selected_node = -1; } void reset_mouse_highlight() { if (highlighted_node != -1) nodes[highlighted_node].setOutlineColor(color::POINT_OUTLINE_COLOR); highlighted_node = -1; highlight_easing.reset(); } void process_mouse_drag(blt::i32 width, blt::i32 height); void handle_mouse(); void use_Eades() { equation = std::make_unique(); } void use_Fruchterman_Reingold() { equation = std::make_unique(); } void start_sim() { sim = true; } void stop_sim() { sim = false; } [[nodiscard]] std::string getSimulatorName() const { return equation->name(); } [[nodiscard]] auto* getSimulator() const { return equation.get(); } [[nodiscard]] auto getCoolingFactor() const { return equation->cooling_factor(current_iterations); } void reset_iterations() { current_iterations = 0; } [[nodiscard]] bool& getIterControl() { return run_infinitely; } [[nodiscard]] float& getSimSpeed() { return sim_speed; } [[nodiscard]] float& getThreshold() { return threshold; } [[nodiscard]] int& getMaxIterations() { return max_iterations; } [[nodiscard]] int numberOfNodes() const { return static_cast(nodes.size()); } }; class engine_t { private: graph_t graph; void draw_gui(const blt::gfx::window_data& data); public: void init(const blt::gfx::window_data& data) { graph.make_new({0, 0, data.width, data.height}, 5, 25, 0.2); } void render(const blt::gfx::window_data& data) { draw_gui(data); auto& io = ImGui::GetIO(); if (!io.WantCaptureMouse) { graph.process_mouse_drag(data.width, data.height); } graph.render(); } }; #endif //GRAPHS_GRAPH_H